MODELING AND NUMERICAL SIMULATION OF SOLAR HYBRID POWER PLANT

IMAD EDDINE MERICHE, ABDELHADI BEGHIDJA, KARIMA REZGUI

Department of Mechanics, University of Constantine-1.
Laboratory of Renewable Energies and Durable Development .25000 Constantine, Algeria

Abstract

The aim of this paper is to review and evaluate the performances of a solar tower gas turbine central with a capacity of 11.5 MWe, then we assess the potential to improve the capacity of the installation by adding a combined steam cycle with electrical production equal to 3.5. The numerical study of the installation will be done by calculating the solar fields' effectiveness, and then we simulate the different components of the installation by the TRNSYS 16 software.

The main objective of the study is to give a thermodynamic and economic analysis, and assess the feasibility of the installation for the climatic conditions in Béchar area, located in the south of Algeria.

Keywords: Solar Gas Turbine, Volumetric Receiver, Combined Rankine Cycle, Energetic and Exergetic Analyses, LEC.
I. INTRODUCTION

Solar energy represents an abundant resource and one of the most promising sources of renewable energy, which theoretically could supply the world’s energy demand [1].

Currently, there are two approaches for generating electricity from solar energy, the first one is the direct conversion of the solar radiation into electricity (photovoltaic panels), and the second one is the thermal conversion of the solar radiation by concentrating solar power systems (CSP).

The CSP concept is based on concentrating and focusing the direct solar irradiation by mirrors onto the volumetric receiver. The last device transfers thermal energy into conventional power cycles using steam turbines, gas turbines or Sterling engines [2]. Since solar energy is not available 24 hours per day, hybridization of the installation is one of the required solutions if electricity generation at night or during cloudy periods is necessary.

The solar tower power plants employ many sun-tracking mirrors called heliostats to reflect and concentrate the incident sunlight onto a receiver atop the tower; the absorbed solar energy translates into thermal power to generate electricity by Rankine cycle or Brayton cycle.

II. DESCRIPTION OF THE PHYSICAL MODEL

In hybrid solar gas turbine towers, a closed pressurized air receiver absorbs the concentrated solar energy. This energy is used to heat the pressurized air before entering into the combustion chamber of the gas turbine; the heated pressurized air is used to drive a Brayton power cycle [3].

The solar hybrid gas turbine system was tested firstly in the SOLGATE project [4], and similar projects were tested like the PEGASE hybrid gas turbine system project [5]-[6], which combines a closed solar receiver (REFOS) with a gas turbine.

Our present work seeks a numerical simulation and a thermodynamic study of a high output solar gas turbine tower plant with a combined steam cycle as an additional component, which will recover the latent heat of fume exhausted to drive the Rankine steam cycle as presented in figure 1 and figure 2.

![Fig.1. Combined solar gas turbine installation](Image)

III. SOLAR ENERGY POTENTIAL IN ALGERIA

Algeria is characterized by abundant sunshine throughout the year, low humidity and precipitation, and plenty of unused flat land especially in the Sahara region (1.787,000 km²).

Algeria is counted as one of the sunniest countries in the world, with duration of sunshine up to 3500 hours/year, and the average energy received on a horizontal surface is equal to 1700 kWh/m²/year on the North of the country, and 2263 (kWh /m² / year) in the desert and south of it [7].

According to the study of the German Aerospace Centre, Algeria has the largest long term land potential for concentrating solar thermal power plants (CSP) [8]-[9].

IV. MATHEMATICAL FORMULATION

A. Energy balance

The energy balances of the different components in the solar gas turbine system are [10]:

- **Air compressor**

The air compressor input power [13] is found as:

\[W_C = m_a C_p a(T_2 - T_1) \]

\[T_2 = T_1 \left(1 + \frac{1}{\eta_{AC}} \left(\frac{V_a - 1}{V_a} - 1\right)\right) \]

\[C_p a(T) = 1.048 - \left(\frac{2.03 T}{10^4}\right) + \left(\frac{9.45 T^2}{10^7}\right) - \left(\frac{5.49 T^3}{10^10}\right) + \left(\frac{7.92 T^4}{10^{13}}\right) \]

- **Solar receiver**

The sunlight solar flux \(I_C \) is reflected by a surface \(S_C \) of the heliostat field and intercepted by the volumetric solar receiver. The thermal power intercepted in the cavity of the closed volumetric receiver is written [11]:

\[\dot{Q}_C = \eta_{field} I_C S_C \]

(2)

The matrix of the solar effectiveness field \(\eta_{field} \) includes the reflectivity of the mirror \(\rho_{MIRR} \), the cosine effect \(\eta_{cos} \), the shades effect and blockings \(\eta_{Block,shad} \), the atmospheric effect \(\eta_{Atmos} \), and the interception effect \(\eta_{Int} \) [12, 13] (figure 3) is written as:

\[\eta_{field} = \rho_{MIRR} \times \eta_{cos} \times \eta_{Block,shad} \times \eta_{Atmos} \times \eta_{Int} \]

(3)
The electric output power is also found as:

\[P_{el} = W_{GR} \cdot \eta_{al} \] \hspace{1cm} (10)

The energy balances of the different components [15] of the steam cycle are:

- Pump

\[W_p = \frac{m_b (h_2 - h_b)}{\eta_p} \] \hspace{1cm} (11)

- Steam generator

The exhaust gases of the gas turbine are transferred to the heat recovery steam generator (HRSG), which comprises the economizer, evaporator and super heater. In the steam generator, the contribution of energy to the steam is:

\[Q_{SG} = m_2 (h_8 - h_7) \] \hspace{1cm} (12)

- Steam turbine

The work provided by the turbine is expressed as:

\[W_{ST} = m_0 \eta_{el} (h_9 - h_8) \] \hspace{1cm} (13)

- Condenser

The thermal power rejected into the condenser is expressed by:

\[Q_{cond} = m_0 (h_9 - h_0) \] \hspace{1cm} (14)

B. Exergy balance

Exergy analysis can evaluate and indicate the causes of the thermodynamic imperfection in the energy system [16].

The exergy is defined as the maximum useful work that can be done by a system interacting with a reference environment and it is divided into physical and chemical exergy. By applying the second law of thermodynamics we obtain the exergy balance:

\[\dot{E_x}_q + \sum_i \dot{m}_ix_i = \sum_i \dot{m}_ix_i + \dot{E_x}_W + \dot{E_x}_D \] \hspace{1cm} (15)

With:

\[\dot{E_x}_q = \left(1 - \frac{\eta}{\eta_i} \right) \dot{Q}_i \] \hspace{1cm} (16)

\[\dot{E_x}_W = \dot{W} \] \hspace{1cm} (17)

\[ex = ex_{ph} + ex_{ch} \] \hspace{1cm} (18)

The chemical exergy of the gas mixture is defined as follows:

\[ex^{mix}_{ch} = \sum_{i=1}^n x_i ex_{ch} + RT \sum_{i=1}^n x_i \ln x_i \] \hspace{1cm} (19)

\[\dot{E_x}_Q, \dot{E_x}_W \]: Thermal exergy and power exergy.

\[ex_{ph}, ex_{ch} \]: Physical exergy and chemical exergy.

- Heliostats fields

Exergy expression of heliostat field [17] is given as:

\[Ex_{hel} = Ex_{rec} + Ex_{hel,loss} \] \hspace{1cm} (20)

\[Ex_{hel} = Q_{hel} (1 - \frac{\eta}{\eta_{sol}}) \] \hspace{1cm} (21)

\[Ex_{rec} = Q_r (1 - \frac{\eta}{\eta_{sol}}) \] \hspace{1cm} (22)

Exergy efficacy of heliostats field is:

\[\eta_{ex,hel} = \frac{Ex_{rec}}{Ex_{hel}} \] \hspace{1cm} (23)
- Volumetric receiver

The exergy expression in the solar receiver [17] is given as:

\[
E_{x,\text{rec}} = E_{x,\text{rec,abs}} + E_{x,\text{rec,loss}} + IR_{\text{rec}}
\]

(24)

\[
E_{x,\text{rec,loss}} = \dot{Q}_{\text{rec,tot,loss}} \left(1 - \frac{T_0}{T_{\text{rec}}} \right)
\]

(25)

\[
E_{x,\text{rec,abs}} = m \left[(h_3 + h_2) - T_0 (s_3 - s_2) \right]
\]

(26)

Exergy efficacy of the solar receiver is:

\[
\eta_{x,\text{rec}} = \frac{E_{x,\text{rec,abs}}}{E_{x,\text{rec}}}
\]

(27)

The expression of exergetic efficiencies of the gas turbine components [18] are in table 1.

TABLE I: EXERGETIC EFFICIENCIES OF THE GAS TURBINE

<table>
<thead>
<tr>
<th>Components</th>
<th>Destruction of Exergy</th>
<th>Exergy Efficiencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor</td>
<td>[\dot{E}{x,\text{p}} = \dot{E}{x_1} - \dot{E}{x_2} + W{\text{p}}]</td>
<td>[\eta_{x,\text{p}} = \frac{\dot{E}{x_1} - \dot{E}{x_2}}{W_{\text{p}}}]</td>
</tr>
<tr>
<td>Combustion chamber</td>
<td>[\dot{E}{x,\text{cc}} = \dot{E}{x_3} + \dot{E}{x_f} - \dot{E}{x_4}]</td>
<td>[\eta_{x,\text{cc}} = \frac{\dot{E}{x_3} + \dot{E}{x_f}}{\dot{E}{x_4} + \dot{E}{x_f}}]</td>
</tr>
<tr>
<td>Turbine</td>
<td>[\dot{E}{x,\text{GT}} = \dot{E}{x_5} - \dot{E}{x_4} + W{\text{GT}}]</td>
<td>[\eta_{x,\text{GT}} = \frac{\dot{E}{x_5} - \dot{E}{x_4}}{W_{\text{GT}}}]</td>
</tr>
</tbody>
</table>

The expressions of exergetic efficiencies in the various components of the steam turbine [17]-[18] are in table 2.

TABLE II: EXERGETIC EFFICIENCIES OF THE STEAM CYCLE

<table>
<thead>
<tr>
<th>Components</th>
<th>Exergy Destruction</th>
<th>Exergy Efficiencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>[\dot{E}{x,\text{p}} = \dot{E}{x_1} - \dot{E}{x_2} + W{\text{p}}]</td>
<td>[\eta_{x,\text{p}} = \frac{\dot{E}{x_1} - \dot{E}{x_2}}{W_{\text{p}}}]</td>
</tr>
<tr>
<td>Steam generator</td>
<td>[\dot{E}{x,\text{SG}} = \dot{E}{x_9} - \dot{E}_{x_8}]</td>
<td>[\eta_{x,\text{SG}} = \frac{\dot{E}{x_9} - \dot{E}{x_8}}{\dot{E}{x_8} - \dot{E}{x_9}}]</td>
</tr>
<tr>
<td>Turbine</td>
<td>[\dot{E}{x,\text{TV}} = \dot{E}{x_7} - \dot{E}_{x_6}]</td>
<td>[\eta_{x,\text{TV}} = \frac{\dot{E}{x_7} - \dot{E}{x_6}}{\dot{E}{x_6} - \dot{E}{x_7}}]</td>
</tr>
<tr>
<td>Condenser</td>
<td>[\dot{E}{x,\text{cond}} = \dot{E}{x_1} - \dot{E}{x_5} + W{\text{cond}}]</td>
<td>[\eta_{x,\text{cond}} = 1 - \frac{\dot{E}{x_1} - \dot{E}{x_5} + W_{\text{cond}}}{\dot{E}{x_1} - \dot{E}{x_5}}]</td>
</tr>
</tbody>
</table>

V. SIMULATION OF INSTALLATION AND PARAMETERS

A. Simulation

The radiation view factor was calculated by an algorithm which develops a Monte-Carlo ray-tracing technique. The algorithm calculates the vector leaving the originating surface at a random location, angle, elevation, and checks if the vector intersects the polygon on the target surface [19]. The Monte-Carlo ray tracing algorithm [19] was applied and inserted in the TRNSYS model [20].

The simulation and the design of the optics and the thermal model parts of the solar gas turbine with combined cycle was optimized using TRNSYS 16 software including STEC 3.0 library (Solar Thermal Electric Components) [20] figure 4, the inputs parameters in the simulation are the hourly solar irradiance, meteorological data, site information and technical system data.

To validate the numerical model simulated in TRNSYS software of the solar gas turbine, we use the numerical study of the solar gas turbine PGT10 (simulated with TRNSYS16) verified in the SOLGATE project as a reference [4], than we calibrated our solar gas turbine model by the different parameters data provided by the manufacturer [21]. The numerical model of steam turbine has been elaborated and validated by an existing steam turbine power plant.

B. Parameters of the installation

The solar gas turbine with combined cycle are considered to be operating at its nominal point, the gas turbine, steam turbine, compressor and pump units have been characterised by their isentropic efficiencies [21]-[22]. All parameters of the solar gas turbine and steam cycle are given in table 3 and table 4.

TABLE III: PARAMETERS OF THE INSTALLATION

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brayton Cycle</td>
<td>100 °C</td>
</tr>
<tr>
<td>Calorific value of natural gas in Algeria (LHV)</td>
<td>45119 kJ/kg</td>
</tr>
<tr>
<td>Compressor isentropic efficiency</td>
<td>86 %</td>
</tr>
<tr>
<td>Atmospheric conditions</td>
<td>100 kPa, 25°C</td>
</tr>
<tr>
<td>Turbine isentropic efficiency</td>
<td>85 %</td>
</tr>
<tr>
<td>Chamber combustion efficiency</td>
<td>95 %</td>
</tr>
<tr>
<td>Electromechanical efficiency of generator</td>
<td>98 %</td>
</tr>
<tr>
<td>Pressure lost in the solar receiver</td>
<td>1.25 %</td>
</tr>
<tr>
<td>Pressure lost in the combustion chamber</td>
<td>4 %</td>
</tr>
<tr>
<td>Compressor pressure</td>
<td>11.1 bar</td>
</tr>
<tr>
<td>Air mass flow used (m)</td>
<td>56.2 Kg/s</td>
</tr>
<tr>
<td>Pressure of exhaust fumes</td>
<td>101.5 KPa</td>
</tr>
<tr>
<td>Rankine Cycle</td>
<td></td>
</tr>
<tr>
<td>Steam pressure</td>
<td>58.4 bar</td>
</tr>
<tr>
<td>Steam mass flow</td>
<td>3.7 Kg/s</td>
</tr>
<tr>
<td>Condensation pressure</td>
<td>0.13 bar</td>
</tr>
<tr>
<td>Condensation temperature</td>
<td>45.1°C</td>
</tr>
<tr>
<td>Turbine isentropic efficiency</td>
<td>90 %</td>
</tr>
<tr>
<td>Pump isentropic efficiency</td>
<td>90 %</td>
</tr>
</tbody>
</table>
TABLE IV. PARAMETERS OF THE SOLAR TOWER CONCENTRATOR [4]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflectivity of mirrors</td>
<td>92%</td>
</tr>
<tr>
<td>Total error (σ_𝑡𝑜𝑡)</td>
<td>4 mrad</td>
</tr>
<tr>
<td>Receiver area</td>
<td>52 m²</td>
</tr>
<tr>
<td>Heliostat reflective area</td>
<td>11×11 m²</td>
</tr>
<tr>
<td>Average direct normal irradiation (I)</td>
<td>800 W/m²</td>
</tr>
</tbody>
</table>

TABLE V. SOLAR FIELD EFFICIENCIES

<table>
<thead>
<tr>
<th>ηMirror</th>
<th>ηCos</th>
<th>ηBlock/shad</th>
<th>ηAtmos</th>
<th>ηIntercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>88 %</td>
<td>89.60 %</td>
<td>94.45 %</td>
<td>96.32 %</td>
<td>99.47 %</td>
</tr>
</tbody>
</table>

VI. PERFORMANCE OF THE INSTALLATION

To calculate the daily performances of the installation we selected the average solar irradiation profiles of Béchar area.

The average efficiencies of the solar field calculated by FORTRAN code [19] and verified by the software SolTrace [4] are given in Table 5.

TABLE V. SOLAR FIELD EFFICIENCIES

<table>
<thead>
<tr>
<th>Subset</th>
<th>Energy (M Watt)</th>
<th>Temperature (°C)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heliostat field</td>
<td>P_solar = 58.98</td>
<td>Tamb = 20</td>
<td>71.35</td>
</tr>
<tr>
<td>Receiver</td>
<td>Q_c = 42.08</td>
<td>T_2 = 363</td>
<td>78.63</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>P_fuel = 13.54</td>
<td>T_5 = 425</td>
<td>-</td>
</tr>
<tr>
<td>Brayton Cycle</td>
<td>W_CE = 11.5</td>
<td></td>
<td>20.67</td>
</tr>
<tr>
<td>Rankine Cycle</td>
<td>P_elec = 3.5</td>
<td>T_2 = 51.25</td>
<td>32.31</td>
</tr>
<tr>
<td>Combined Cycle</td>
<td>P_elec = 15</td>
<td></td>
<td>26.96</td>
</tr>
</tbody>
</table>

A. Influence of direct normal solar irradiation on the absorbed solar energy and consumption of natural gas

Direct normal solar irradiation (DNI) has a direct impact on the absorbed solar energy in the receiver and consumption of natural gas in the combustion chamber.

In figure 5 we can see, that the absorbed solar energy in the receiver increases with the direct normal solar irradiation, which implies the decrease of natural gas fuel consumption in the combustion chamber.

Fig.5. Variation of natural gas consumption and absorbed solar energy according to direct solar irradiation

B. Energy efficiencies

To calculate the energetic performances of the solar gas turbine without and with the combined steam cycle, we take the optimal conditions of solar irradiation and the best performances of the heliostats fields obtained by a typical clear day, the results are given in table 6.

TABLE VI. ENERGY EFFICIENCIES OF THE INSTALLATION

<table>
<thead>
<tr>
<th>Subset</th>
<th>Energy (M Watt)</th>
<th>Temperature (°C)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heliostat field</td>
<td>P_solar = 58.98</td>
<td>Tamb = 20</td>
<td>71.35</td>
</tr>
<tr>
<td>Receiver</td>
<td>Q_c = 42.08</td>
<td>T_2 = 363</td>
<td>78.63</td>
</tr>
<tr>
<td>Gas Turbine</td>
<td>P_fuel = 13.54</td>
<td>T_5 = 425</td>
<td>-</td>
</tr>
<tr>
<td>Brayton Cycle</td>
<td>W_CE = 11.5</td>
<td></td>
<td>20.67</td>
</tr>
<tr>
<td>Rankine Cycle</td>
<td>P_elec = 3.5</td>
<td>T_2 = 51.25</td>
<td>32.31</td>
</tr>
<tr>
<td>Combined Cycle</td>
<td>P_elec = 15</td>
<td></td>
<td>26.96</td>
</tr>
</tbody>
</table>

C. Exergy efficiencies

After calculating the energetic efficiencies, we calculate the exergy efficiencies of the solar installation with the combined steam cycle, the results are represented in figure 6.

Fig.6. Exergy efficiencies of the installation

VII. DAILY PERFORMANCES

The plant is considered to be located in Southern Algeria region of Béchar (figure 7), solar irradiation and climatic conditions data has been obtained for the generic day (21/03/2010), shown in figure 8, this date is chosen in order to avoid under sizing of the heliostats field area [23].
Fig. 7. Geographic location of Béchar area

Fig. 8. Daily variation of temperature, wind and solar irradiation in Béchar area (21 Mars 2010)

Using daily variation in figure 8, we calculate the temporal evolution of absorbed and received solar power, electrical production and fuel power consumption in the combined installation; the results are given in figure 9.

Fig. 9. Temporal evolution of the powers in the installation (21 mars 2010)

A. Energetic and exergetic daily efficiencies performances

With the daily variation of energies represented in figure 9, we calculate the temporal evolution of energetic and exergetic efficiencies in the solar gas turbine installation without and with the combined steam cycle; the results are represented in figure 10 and figure 11.

Fig. 10. Temporal evolution of energetic efficiencies in the solar installation

Fig. 11. Temporal evolution of exergetic efficiencies in the solar installation
VIII. ECONOMIC ANALYSIS OF THE INSTALLATION

The economic analysis is done by estimation of the levelized electric cost of the combined solar-gas turbine. With data taken from the ECOSTAR report [24] and the other original works as Lovegrove [25], Frangopoulos [26], and Spelling [22], we calculate the installation total investment cost (Table 7).

The levelized electric cost (LEC) [27] is expressed as follows:

\[
LEC = \frac{f_{\text{ins}} + C_{\text{O&M}} + C_{\text{fuel}}}{\text{E}_{\text{net}}} \]
(28)

With:

\[
f = k_{d} \frac{(1+k_{d})^{n}}{(1+k_{d})^{n-1}} + k_{\text{insurance}} \]
(29)

\[
C_{\text{O&M}} = 9.36 \left(A_{\text{helo}} \cdot N_{\text{helo}} \right) \]
(30)

Using the energetic performance results, we calculate the annual electricity production and the annual fuel consumption in the installation.

The levelized electric cost of the combined solar gas turbine power plant is shown in Table 8.

TABLE VII. COMPONENT'S COSTS OF THE COMBINED SOLAR-GAS TURBINE

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Turbine System</td>
<td>7'159'000 [USD]</td>
</tr>
<tr>
<td>Steam turbine system</td>
<td>3'595'000 [USD]</td>
</tr>
<tr>
<td>Waste heat boiler</td>
<td>2'271'000 [USD]</td>
</tr>
<tr>
<td>Air-cooled condenser</td>
<td>6'950'000 [USD]</td>
</tr>
<tr>
<td>Feedwater pump</td>
<td>14'000 [USD]</td>
</tr>
<tr>
<td>Central tower</td>
<td>265'700 [USD]</td>
</tr>
<tr>
<td>Volumetric receiver</td>
<td>11'830'000 [USD]</td>
</tr>
<tr>
<td>Heliostat field</td>
<td>92'794'000 [USD]</td>
</tr>
<tr>
<td>(52 m²)</td>
<td></td>
</tr>
<tr>
<td>Power electronics and control</td>
<td>2'435'000 [USD]</td>
</tr>
<tr>
<td>Civil engineering works</td>
<td>14'545'000 [USD]</td>
</tr>
<tr>
<td>Total Investment Cost</td>
<td>500'884'000 [USD]</td>
</tr>
</tbody>
</table>

TABLE VII. LEVELIZED ELECTRIC COST OF THE COMBINED SOLAR-GAS TURBINE POWER PLANT

<table>
<thead>
<tr>
<th>Result</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total installation investment cost</td>
<td>500'884'00 [USD]</td>
</tr>
<tr>
<td>(C_{\text{inv}})</td>
<td>0 [yrs]</td>
</tr>
<tr>
<td>Depreciation period (n)</td>
<td>25 [%]</td>
</tr>
<tr>
<td>Real interest rate (k_{d})</td>
<td>8 [%]</td>
</tr>
<tr>
<td>Annual insurance rate (k_{\text{insurance}})</td>
<td>1 [%]</td>
</tr>
<tr>
<td>Annual electricity production (E_{\text{net}})</td>
<td>125.6 [GWh]</td>
</tr>
<tr>
<td>Annual fuel cost (C_{\text{fuel}})</td>
<td>10'508'000 [USD]</td>
</tr>
<tr>
<td>Operation and maintenance costs (C_{\text{O&M}})</td>
<td>6'570'72 [USD]</td>
</tr>
<tr>
<td>Levelized Electrical Cost (LEC)</td>
<td>0.0549 [USD/kWh]</td>
</tr>
</tbody>
</table>

IX. DISCUSSION OF RESULTS

The energy analysis results represented in table 6 shows a clear improvement in the energetic performances of the solar gas turbine by using a combined cycle; we note an increase in the electrical power production up to 15 MWe, and a gain of 6.29% in the energetic efficiency.

The exergy analysis results obtained in Figure 6 reveals that the exergy destruction in the solar gas turbine installation is caused mostly in the solar receiver and combustion chamber.

After calculating the daily performances of the installation as shown in figures 9, we note that the crossing in the absorbed solar energy causes a reduction of the electrical power production. This reduction is explained by a diminution of the consumption of the natural gas inside gas turbine as verified in figure 5, and the high ambient temperatures amplify these reductions.

The decreasing of the ambient temperature especially in night hours generates an improvement on the electrical power production and increases the energetic efficiencies, the results in figure 10 and figure 11 shows a sharp improvement in the energetic and exergetic performances of the installation by using a combined cycle.

Finally, by the economic analysis of the power plant in Table 8, we note that the annual consumption cost of fuel gas remains one of the major factors which influence the levelized electric cost LEC.

CONCLUSION

In this research paper, a preliminary evaluation and simulation of a solar gas turbine installation have been made with an electric power production equal to 11.5 MWe. Then we study the potential improvement of this installation by introducing a combined steam cycle, which uses the latent heat of the exhaust gases as a source of energy with an electrical production equal to 3.5 MWe.

By using the thermodynamic study, we note that the most important causes of the efficiencies decreases of the installation are related to the loss of combustion energy evacuated by the exhaust gases of the solar gas turbine. Moreover, the use of a combined steam cycle is the best
solution to decrease the exergetic irreversibility of the installation and increase the energetic and exergetic efficiencies (a gain of 5.19 % in the exergetic efficiency).

With LEC = 52 USD/MWe, (one of the lowest LEC of concentrating solar power plants), the economic study proves the promising potential of the combined solar gas turbine installation, especially in south Algeria such as Béchar area.

NOMENCLATURE

Q_r : Power transmitted by the cavity of the receiver (Watt)
Q_i : Power received in the cavity of receiver (Watt)
C_p : Specific heat (kJ / kg K)
A_r : Receiver area (m2)
l_i : The direct incident solar power (W/m2)
S_c : The sensor surface of heliostats fields (m2)
T_0 : Ambient temperature (°C)
T_r : Temperature in the receiver (°C)
h_{cv} : Heat transfer coefficient (W/m2K)
m : Mass flow (Kg/h)
LHV : Lower calorific values of natural gas (KJ/Kg)
LEC : Levelized Electric Cost (USD/MWe)
W_{GT} : Gas Turbine power (Watt)
W_c : Compressor power (Watt)
P_{solar} : Solar power transmitted by heliostats (Watt)
P_{rec} : Solar power received (Watt)
$Q_{rec,tot loss}$: Total energy losses in receiver (Watt)
$E_{x rec}$: Exergy in the receiver (Watt)
$E_{x rec,loss}$: Exergy losses in the solar receiver (Watt)
$E_{x rec,abs}$: Exergy absorbed by the solar receiver (Watt)
$I_{R_{rec}}$: Irreversibility power in the solar receiver (Watt)
m_f : Mass flow of the natural gas used in combustion (Kg/h)
m_a : Mass flow of air (Kg/h)
m_g : Mass flow of gases (Kg/h)
C_{pg} : Specific heat of gases (kJ / kg K)
$E_{x rec,loss}$: Exergy losses in the receiver (Watt)
$E_x f$: Exergy of the fuel gas (Watt)
$E_{x sol}$: Exergy (Watt)
$E_{x d,rec}$: Destruction exergy in the receiver (Watt)
$E_{x d,GT}$: Destruction exergy in gas turbine cycle (Watt)
$E_{x D,Ran}$: Destruction exergy in Rankine cycle (Watt)
η : Efficiency
η_{st} : Efficiency of steam turbine
c : Absorber Emissivity.
σ : Stefan Boltzmann constant (5.670 \times 10^{-8}W/m2.K4)
$\eta_{ex heliostat}$: Exergy efficiency of heliostats
$\eta_{ex d,rec}$: Efficiency of destruction exergy in receiver
$\eta_{ex d,GT}$: Efficiency of destruction exergy in solar gas turbine
$\eta_{ex,inst}$: Exergy efficiency of combined cycle
$\eta_{ex d,ran}$: Efficiency of destruction exergy in Rankine cycle

REFERENCES

[23] Climatic Condition METEONORM V 7.0.

