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Abstract  

 Review of history matching of reservoirs parameters in groundwater flow raises the problem 
of identifiability of aquifer systems. Lack of identifiability means that there exists parameters to 
which the heads are insensitive. From the guidelines of the study of the homogeneous case, we 
inspect the identifiability of the distributed transmissivity field of heterogeneous groundwater 
aquifers. These are derived from multiple realizations of a random function Y = log T  whose 
probability distribution function is normal. 

We follow the identifiability of the autocorrelated block transmissivities through the measure 
of the sensitivity of the local derivatives DT h = (∂hi  ∕ ∂Tj) computed for each sample of a 

population N (0; σY, αY). Results obtained from an analysis of Monte Carlo type suggest that the 
more a system is heterogeneous, the less it is identifiable. 

Keywords: groundwater modeling, inverse problem, identification, optimisation, 
heterogeneity. 
 

Résumé 

Le calage des paramètres des modèles numériques de nappes pose le problème de 
l’identifiabilité des systèmes aquifères. Le défaut d’identifiabilité signifie qu’il existe des 
paramètres dont les variations n’affectent pas sensiblement les charges hydrauliques h.  

Des enseignements tirés de l’étude du cas homogène, l’identifiabilité des systèmes aquifères 
hétérogènes est envisagée en générant des champs de transmissivités T à partir de réalisations de 
la fonction aléatoire Y = log T .  

Cette question est traitée sur des exemples synthétiques en utilisant une analyse de type 
Monte Carlo. L’identifiabilité des transmissivités des blocs aquifères auto-corrélés est inspectée 
en évaluant la sensitivité des dérivées DT h = (∂hi  ∕ ∂Tj) pour chaque échantillon extrait de la 

population N (0; σY, αY). Nous établissons que, de fait, un système est d’autant moins identifiable 
qu’il est hétérogène. 
Mots clés: hydrogéologie, problème inverse, identification, optimisation, 
hétérogénéité. 
 

  
 
 

he increasing development of computer groundwater modeling 
still have to face to the problem of estimating the aquifer 

parameters. This decisive stage is still conducted in the traditional 
manual way of trial -and - error procedure. Although very instructive, 
this approach is large time consuming. Several attempts to perform 
automatically the model calibration, i.e. history matching, actually 
failed because of ill posedness. Behind this question point out 
insensitivity, nonunicity and instability.  
  Insensitivity means that we do not provide enough information to 
support estimation of the parameters. Nonuniqueness appears when 
match to the observations may be realized with several combinations 
of parameters. Instability indicates that slight changes in parameters 
values sharply affect model outputs. 
  Now, however, a large body of the works on the subject defines 
the conditions under which identifiability of aquifer systems is 
possible. 
  In this context, Kitamura [1], Chavent [2] and Carrera et al., [3] 
have pointed out some basic guidelines where identifiability of 
parameters can be realized. They confirmed the orientations of the 
previous works seeking for preliminary data, setting upper and lower 
bounds, attempting to reduce errors of measure and trying judicious 
variable  transformations to moderate non linearities.  

Actual  modeling  packages  take  advantage  of  these  features  to  
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  صملخ
إن توابث النماذج  الرقمیة للغطاءات المائیة یطرح 

وتعریف الأنظمة المائیة. والخلل في ذلك یدل مشكل تعیین 
على وجود عناصر ذات تغیرات لا تمس  الحمولات 

  .hالمائیة 
إن دلالات أستنتجت من خلال دراسة حالة متجانسة 
أثبتت أنھ یمكن التعرف عى الأنظمة المائیة عن طریق 

 Yومن خلال إنشاء وتحقیق دالة آنیة Tخلق حقول منقولیة 

= log T.  
لمسألة عولجت بأمثلة تركیبیة وطلك باستعمال ھذه ا

تحلیل على شاكلة مونت اكارلو. إن تعیین منقولیات 
المجسمات المائیة المقارنة  ذاتیا فتشت بتقییم محسوسیة 

مستخرجة  Yلكل عینة من  j∂T∕ i∂h(=  h TD( المشتقات
  .Yα, Yσ(0;  N (من التوزیع الأم (السكان الأصلي) 

أن نظاما ما ھو أقل تتعرفا لكونھ غیر یمكننا إذن ترسیخ 
  متجانس.

ھیدروجیولوجیا، مشكل عكسي،  :الكلمات المفتاحیة
  تعیین، الأفضلي،عدم تجانس.
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propose successful yet powerful inverse codes [4,5] which 
agree the task mentioned in the preface of [6]. Moreover, 
recent trends in the discipline reveal a tendency to get out 
the single valued predictions and, further, to produce 
confidence bounds. The previous evolution let the 
parameters not transgressing their allowed domains as 
dictated by the ad hoc field through the  definition of its 
probability distribution function (pdf) and the 
characteristics of its spatial variability.  

Concerning the  log - transmissivity field Y, its pdf is 
normally distributed with a mean mY and a standard 
deviation σY. Its spatial variability is described through a 
covariance function expressing the way values of Y 
conciliate. The autocorrelation parameter αY is a 
characteristic of this covariance function whereas Y stands 
up for a well-known transformation variable. Henceforth, 
boldface will refer to matrices. 

Thus, our point will be this: According to the definition, 
now largely agreed, that lack of identifiability means that 
there exists some parameters to which the heads h = (hi) are 
insensitive, we look into this insensitivity with respect to 
the heterogeneity field of the transmissivities T = (Ti). 
Through the measure of the local derivatives DTh = (∂hi ∕ 
∂Tj), realized on multiple replications of a single field log T, 
we follow the evolution of DTh for different values of the 
parameters σY and αY of the heterogeneous field. These 
realizations of the random function Y are obtained from a 
generator of auto-correlated log-normal values of 
transmissivities. These are extracted from the population N 
(0; σY, αY). The simulations performed on these synthetic 
realizations are of Monte Carlo type. They provide both a 
measure of the sensitivity of h to T and of T to h 
parameterized on σY  and αY. As one cannot intuitively guess 
it, identifiability of aquifer systems is not significantly 
affected by the degree of variability of Y. Only the 
estimates are perturbated. 
 
HISTORY MATCHING 

Modeling a groundwater system is indeed a three stages 
process where (1) characterization points out the right 
model, (2) history matching estimates parameters and (3) 
simulation performs prediction on the heads evolution. 
Practically, we do not deal with such a linear scheme. In 
fact, stages 2 and 3 alternate in a cyclic way up to conform 
the estimates to the data sets. 

Automatic history matching by linear estimators seek to 
minimize a performance criterion in view to estimate the 
flow field parameters. The most often used belongs either 
to the class of the least squares or to the bayesian and the 
maximum likelihood estimators. Let us examine the 
principle of the more elementary of them: The least squares 
(LS) estimator. 

An LS estimator seeks for a distributed values, say {Ti } 
to minimise a performance criterion Ψ  : 

2

   
)(       *

T
 - hThMin                         (1)  

h* are the m measured heads and h the computed head 
values obtained by solving the analogue form : 

B(T) h = q                      (2) 
of the equation which describes the 2-D steady state 

groundwater flow in the unit square domain : 
  div (T grad h)  =  q                       (3a) 

subjected to the boundary conditions :  

Nhxh   )0,(   

Shxh   )1,(                                      (3b) 

Lhyhyh   ),1(  ),0(   

B is the flow matrix, q a column matrix including the 
source terms q and the boundary contributions whereas T = 
T(x, y) is the parameter of the field namely known as the 
transmissivity and h = h(x, y) is the usual hydraulic head 
staying for the unknown function of the partial differential 
equation (PDE). 

Although estimating the heads from equation (2) is not a 
linear problem in T, we are still using linear estimators. We 
only need to take care to linearize h according to some 
classical techniques as the Gauss-Newton -Kantorovich one 
[6] : 

h = h(Ť) + DT h(T-Ť) + ε(Δ2)             (4) 
The last term indicates that the local truncation error for 

this formula is in the order of ε(Δ2). This term is not used 
directly in the application of the formula but only as an 
indicator of the accuracy of the approximation. Then, the 
performance criterion of equation (1) can be written near an 
estimate Ť of T : 

Ψ (T) = ║ h – [ h(Ť) + DT h(T-Ť)] ║2     (5) 

The classical solution of which is known. It is given by : 

Ŧ = [ (DT h)t DT h ]-1 (DT h)t [ h – h(Ť) ]  + Ť         (6) 

where DT h = (∂hi ∕ ∂Tj) is the local derivative of h with 
respect to T. It stands for the sensitivity of h to 
perturbations on T. The superscript “t” means matrix 
transpose operation. The linearized equations (6) are often 
presented under the normal form : 

 u = [ (DT h)t DT h ]-1 (DT h)t [ h – h(Ť) ]     (7) 

where u = Ŧ – Ť is an upgraded parameter which can be 
achieved through an iterative process via the Gauss-
Marquard-Levenberg’s method.    
 
SENSITIVITY OF THE LEAST SQUARES 
ESTIMATOR 

The solution given by equation (4) is an estimation 
performed with the LS estimator. It is the best linear 

unbiaised estimator of T appearing in equation (1). If 2
hσ  

stands for the variance of the actual observations h* then it 
can be evaluated by : 

nm
σh   

    2





 

where (m-n) indicates the difference between the number of 
observations and the number of parameters to be estimated 
i.e the degree of freedom. 

To examine the sensitivity of LS to uncertainty on the 
head h, we may differentiate equation (4). Then, we obtain : 

Dh Ŧ  = [ (DT h)t (DT h) ]-1 (DT h)t      (8) 

It is further useful to compute its covariance which is 
expressed by : 

CT  = 2
hσ (Dh Ŧ) (Dh Ŧ)t                  (9) 
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According to the previous development concerning the 
local derivatives of Ŧ i.e. Dh Ŧ = (∂hi ∕ ∂ Ŧj), we should 
notice that the elements of this sensitivity matrix are local 
sensitivity coefficients which depend on the value of Ŧ. 
They can be used only in the neighbourhood of the 
optimum of the LS estimator. Accuracy in derivatives 
computation is fundamental to the success of the 
optimisation process. 

One can get a fast idea about the quality of these 
estimates either through the examen of the correlation 
matrix  ρ = [ σij / (σii σjj )½ ] or the diagonal of CT . A quick 
appreciation of the global variance of these estimates is 
given by the trace of the covariance matrix CT. In this case, 
we can get evaluation of Tr(CT) through the sum of the 
eigenvalues λi of CT : 

Tr (CT)  =  2
hσ  

i
iλ 1                (10) 

in order to evaluate the accuracy of estimates Ť. 
 
IDENTIFIABILITY 

Mathematics of history matching is still plagued by 
problems of identifiability [7]. This notion due to Kubrusly 
[8] is strongly connected to the class of inverse problems 
whose solutions are instable. Ill posedness arises from their 
direct formulation which does not account for the non-
satisfaction of the so-called Lipschitz condition [3,9]. Many 
attempts to stabilize these solutions have been tried in view 
to get well posed problems. Following Kitamura et al. [1], 
history matching is an inverse problem studied in the 
framework of the theory of partial differential equations. 
The case where identifiability imply uniqueness requires 
exact values of h and drastic limitations on both the 
boundary conditions and the parameters .  

The situation is somewhat different in [2] and more 
crudely in [3] since incorporating prior information on the 
parameters allow one to deal with positive definite Hessian 
matrix i.e. a sufficient condition for uniqueness which has 
to be confirmed via sensivity analysis. 

So indeed, identifiability allowed to circumscribe the 
conditions to be verified to obtain either continuous stable 
solutions in the LS sense as in [3] or to assure unicity as in 
[1]. 

So far, identifiability actually temperate the scepticism 
due to the sensitivity analysis concerning history matching. 

Such is the framework in which we will analyse the 
sensitivity of the LS estimator and the sensitivity of its 
estimates to perturbations. 

The next section documents on Monte Carlo technique 
used to enhance this analysis. 
 
MONTE CARLO SIMULATIONS 

According to the Monte Carlo approach, let Rij a 
realization of a porous medium  Mij (ω) which stands for an 
underlying stochastic process. 

Given a set Ω of elementary events ω, to Mj is 
associated a random function Y = log T : 

 Yj  =  Yj  (x,y; ω),    ω  Ω                       (11) 

and a matrix equation : 
B (ω) h  =  q            (12) 

which is the discrete stochastic analogue of (2). 
In a similar way, to each Rij is associated a realization ; 

Yij  =  Yj ( x,y ; ωi) =  Yj(x,y) 

and a discrete deterministic analog : 

B h  =  q                              (13)  

Thus far according to (11) and (12) repeating 
realizations of the random function Yj will allow the 
definition of a family of flow matrix B : 

β  = { B (ωi ) }         i = 1,2, … 

Monte Carlo simulations operate successively on 
equation (13) with B of the set β. Through this way we are 
able to produce the first two moments of the solution h, the 
jacobians (∂hi ∕ ∂Tj) and (∂Ti ∕ ∂hj). This process can be 
repeated for each porous medium Mj  i.e. for each random 
function Yj . 
 
NUMERICAL EXPERIMENTS 

The model we simulate is described by a dimensionless 
form of equation (2) subject to conditions (3). The presence 
of a pumping well in the center of the flow domain (Fig. 1) 
allows us to consider the problem as well posed in that the 
distributed parameters T of the aquifer system are 
identifiable according to [1]. Inputs are produced by an 
adequate numerical generator of autocorrelated log T values 
[10]. Each trial is performed with 30 realizations. 

 

1 4 7 

2 5 8 

3 6 9 

Figure 1: Zonation of the flow domain. 
 

 
H  =  hN  =  0 
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h  =  hS  =  0 

Figure 2: Discretization of the flow domain. 
 

Influence of the variability on the jacobian 

The starting point  is the  evaluation  of the  jacobian 
(∂hi ∕ ∂Tj) in the context of different heterogeneity fields.  

Firstly, the results obtained do confirm that uncertainty 
on head increases as long as the standard deviation σY and 
the autocorrelation parameter αY increase.  
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Secondly, perturbating the logT field do not affect 
significantly the flow field. The values of the elements of 
the jacobian are at most of the order of unity. These results 
suggest an insensivity of h to perturbations of T. Yakowitz 
et al. [9] and McElwee [11] have already reported them.  

In figure 1, we depict the zonation of the flow domain 
adopted to reduce the magnitude of the components of the 
jacobian. 

On table 1, the values ∂hi  ∕ ∂Tj of the jacobian are given. 
Only the elements of the greatest module are reported for 
each j. These computations are repeated for all the thirty 
realizations. This approach of a Monte Carlo type provides 
values of ∂hi  ∕ ∂Tj close to three. 

Thirdly, this insensitivity persists whatever the values of 
the parameter αY as we can see it in table 2. 

 

0.21 0.20 0.21 

0.20 0.17 0.23 

0.24 0.32 0.23 

Table 1: Greatest modulus components of the sensitivity matrix 
extracted from N(0; 0.3; 0.5) for i =1,  1 ≤ j ≤ 9. 

 

(σY ; αY) 
ZONES 

1 2 3 4 5 6 7 8 9 
(0. ; 0.) 0.4 0.4 0.4 1.2 0.8 1.2 0.4 1.8 0.4 

(0.1;0.5) 2.9 2.7 2.7 8.9 7.3 7.8 7.5 16.7 12.0 
(0.2;0.5) 3.0 2.6 3.3 8.9 8.4 8.7 19.7 19.0 12.9 
(0.3;0.5) 3.2 2.8 4.2 9.0 9.7 10.5 32.9 24.2 13.8 

Table 2: Jacobian sup ∂hi /∂Tj (x10) for different heterogeneous 
log T fields (1 ≤ i ≤ 36 ; 1 ≤ j ≤ 9) averaged on 36 realizations. 

 
Influence of the variability on LS estimates 

We present the results obtained in the same fashion as 
we did for the  sensitivity matrix DT  h.  

In  table  3, the  greatest  modulus  of the  derivatives 
∂Ti  ∕ ∂hj  are depicted for each row i whereas in table 4 their 
mean values are reported. 

 

9.09 7.92 7.74 

8.00 10.10 5.08 

38.90 64.80 29.90 

Table 3: Greatest modulus components of the sensitivity matrix 
Dh T extracted  from N(0; 0.3; 0.5) for i =1,  1 ≤ j ≤ 9. 

 

(σY ; αY) 
ZONES 

1 2 3 4 5 6 7 8 9 
(0. ; 0.) 7.5    7.2    6.7    13.0    3.5   12.0   30.0     2.4   29.0 
(0.1;0.5) 26.8  18.3   20.1 22.6 12.8    8.5   41.7   11.3   23.8 
(0.2;0.5) 14.     13.    15.      6.    10.     7.     38.      7.    23.        
(0.3;0.5) 15.     13.    14.      8.    10.     7.     39.      5.    26. 

Table 4: Jacobian sup ∂hj /∂Ti for different heterogeneous log T 
fields ( 1 ≤ i ≤ 36 ; 1 ≤ j ≤ 9 ) averaged on 36 realizations. 

The usual interpretation of these sensitivity coefficients 
is to consider them as errors on the estimates due to LS and 
following an error of unity on the heads. The order of these 
values let us think that LS is indeed a rough estimator at 
present. It is so because of the nonlinear character of h with 
respect to T in equation (2). The attempt to linearize it 
seems to fail when increasing σY. We may confirm this 
untractable non-linearity through the examination of the 
covariance matrix CT reported in table 4. The deviation of 
the estimates through the valued trace of CT for different 
log T fields is consigned in table 5.  

 
1.50         
0.16 0.76        
0.64 0.12 0.99       
1.50 0.57 0.95 3.30      
0.90 0.39 0.68 1.30 0.90     
0.41 0.17 0.34 0.68 0.37 0.31    
1.90 0.68 1.10 4.50 1.50 0.81 6.60   
0.65 0.31 0.47 1.00 0.62 0.30 1.20 0.49  
0.50 0.23 0.83 0.98 0.40 0.70 1.30 0.29 3.20 

Table 5: Values of the covariance matrix (x103), N(0;0.3;0.5). 
 

HETEREGENEOUS FIELDS INDEXED ON (σY ; αY) 

(0.0 ; 0.0) (0.1 ; 0.5) (0.2 ; 0.5) ( 0.3 ; 0.5) 

0.38 13.73 13.26 18.05 

Table 6: Values of the trace of the covariance matrix (x104). 
 
So all these observations do confirm that LS estimation 

of T is highly uncertain. It would require a precision on h 
values far from the common ones. According to [8] 
incorporation of  prior information in the expression of Ψ 
improves scarcely the performance of LS.  Furthermore, the 
spectrum of the eigenvalues of CT appears as more 
extended as the system is heterogeneous. This is a result 
which is positively correlated with the one concerning the 
eigenvalues of the flow matrix [12]. Some elements of the 
spectrum of the covariance matrix are even associated with 
directions of relative insensitivity [13]. 

 
CONCLUSIONS 

 
Automatic history matching  with LS is assurely an 

hypothetic estimator of the distributed values of  the log T 
field. Incorporating prior information, indeed, could 
improve it; although a choice of a more performing 
estimator is highly suggested. Moreover, sensitivities of the 
heads are not particularly affected by the magnitude of the 
variability of the log T field. They only affect the estimates 
once the propense instability of the identification problem 
avoided [9,11]. 
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