NUMERICAL STUDY OF THE MIXED CONVECTION HEAT TRANSFER IN ANNULUS HEATED BY JOULEAN EFFECT

S. Touahri and T. Boufendi

Physic Energetic Laboratory, Department of Physic, Mentouri University; Constantine; Algeria
E-mail: Sofianetouahri04@yahoo.fr

Reçu le 12/05/2014 – Accepté le 24/06/2014

Abstract

In the present work, we numerically study the three-dimensional mixed convection heat transfer in the annular space between two concentric horizontal pipes, the external pipe is heated by an electrical intensity passing through its small thickness while the inner cylinder is insulated. The convection in the fluid domain is conjugated to thermal conduction in the pipes solid thickness. The physical properties of the fluid are thermal dependant. The heat losses from the external outside pipe surface to the surrounding ambient are considered. The model equations of continuity, momenta and energy are numerically solved by a finite volume method with a second order spatiotemporal discretization. The obtained results show the three dimensional aspect of the thermal and dynamical fields with considerable variations of the viscosity and moderate variations of the fluid thermal conductivity. As expected, the mixed convection Nusselt number becomes more superior to that of the forced convection when the Grashof number is increased. At the solid-fluid interface, the results show clearly the azimuthal and axial variations of the local heat flux and the local Nusselt numbers. Following these results, we have tried modelling the average Nusselt numberNu as a function of Richardson numberRi. With the parameters used, the heat transfer is quantified by the correlation: Nu_\overline{m} = 9.9130 Ri^{0.0816}.

Keywords: Mixed Convection, Annulus, Conjugate Heat Transfer, Numerical simulation.

Résumé

Dans le présent travail, on étudie numériquement le transfert de chaleur conjugué tridimensionnel dans un espace annulaire compris entre deux cylindriques concentriques horizontaux, dont le cylindre extérieur est soumis à une production d’énergie interne générée par effet Joule à travers son épaisseur tandis que celui intérieur est adiabatique. La convection thermique dans le domaine fluide est conjuguée à une conduction thermique dans le solide. Les propriétés physiques du fluide sont thermo-dépendantes et les pertes thermiques vers le milieu externe seront prises en compte. Les équations modélisantes de continuité, de mouvement et de l’énergie sont numériquement résolus par la méthode des volumes finis avec une discrétisation spatiotemporelle du second ordre. Les résultats obtenus montrent l’aspect tridimensionnel des champs thermpiques et dynamiques avec des variations considérables de la viscosité et des variations modérées de la conductivité thermique du fluide. Comme prévu, le nombre de Nusselt de la convection mixte devient supérieur à celui de la convection forcée lorsque le nombre de Grashof est augmenté. Les résultats à l’interface solide-fluide du cylindre extérieur montrent clairement les variations azimuthales et axiales du flux de chaleur local et du nombre de Nusselt local. Suite à ces résultats, nous avons essayé de modéliser le nombre de Nusselt moyen en fonction de nombre de Richardson. On trouve que la corrélation Nu_\overline{m} = 9.9130 Ri^{0.0816} modélise les résultats avec les conditions et les paramètres de cette étude.

Mots clés : Convection mixte, Espace annulaire, Transfert de chaleur conjugué, Simulation numérique.
I. NOMENCLATURE

\[D_{i1} \text{ Internal diameter of inner pipe, [m].} \]
\[D_{o1} \text{ External diameter of inner pipe, [m].} \]
\[D_{i2} \text{ Internal diameter of outer pipe, [m].} \]
\[D_{o2} \text{ External diameter of outer pipe, [m].} \]
\[D_h \text{ Hydraulic diameter, [m].} \]
\[I \text{ Electrical intensities, [A].} \]
\[L \text{ Pipe length, [m].} \]
\[g \text{ Gravitational acceleration, (= 9.81), [m s}^{-2}] \]
\[G \text{ Volumetric heat generation, [Wm}^{-3}] \]
\[G^* \text{ Non-dimensional volumetric heat generation,} \]
\[\{K^*/Re_{\phi}Pr_0\} \].
\[Gr^* \text{ Modified Grashof number,} (= g\beta GD_1^2 / K_v^3) \]
\[h_i \text{ Radiative heat transfer coefficient,} \]
\[h_v \text{ Convective heat transfer coefficient,} \]
\[h_0 \text{ Convective heat transfer coefficient,} \]
\[h_{av} \text{ Average Nusselt number.} \]
\[K_0 \text{ Fluid thermal conductivity at the entrance,} \]
\[K_0 \text{ Pipe thermal conductivity, [W/m}^\circ\text{K}] \]
\[N_u (\theta, Z^*) \text{ Local Nusselt number.} \]
\[N_u (Z^*) \text{ Axial Nusselt number.} \]
\[N_u_{av} \text{ Average Nusselt number.} \]
\[P \text{ Pressure, [N/m}^2]\]
\[P^* \text{ Nondimensional pressure,} \]
\[Pr \text{ Prandtl number, (v/\alpha).} \]
\[r^* \text{ Nondimensional radial coordinate.} \]
\[Re \text{ Reynolds number,} \]
\[Ri \text{ Richardson number, (Gr/Re)^2}. \]
\[t^* \text{ Nondimensional time,} \]
\[T^* \text{ Nondimensional Temperature,} \]
\[V_0 \text{ Axial mean velocity at the entrance, [m/s].} \]
\[V^*_{av} \text{ Nondimensional circumferential velocity component,} \]
\[V^*_{r} \text{ Nondimensional radial velocity component,} \]
\[V^*_{\theta} \text{ Nondimensional axial Velocity component,} \]
\[z^* \text{ Nondimensional axial coordinate,} \]
\[\alpha \text{ Thermal diffusivity, [m}^2\cdot\text{s}^{-1}] \]
\[\beta \text{ Thermal expansion coefficient, [K}^{-1}] \]
\[\varepsilon \text{ Emissivity coefficient} \]
\[\mu \text{ Dynamic viscosity, [kg m}^{-1}\text{s}] \]

\[\mu^* \text{ Non-dimensional dynamic viscosity (= \mu / \mu_0)} \]
\[\nu \text{ Kinematic viscosity, [m}^2\cdot\text{s}^{-1}] \]
\[\theta \text{ Angular coordinate, [rad]} \]
\[\rho \text{ Density, [kg m}^{-3}] \]
\[\sigma \text{ Stephan-Boltzmann constant (= 5.67 \cdot 10^{-8}),} \]
\[[\text{W m}^{-2}\text{K}^{-1}] \]
\[\tau \text{ Stress, [N m}^{-2}] \]
\[\tau^* \text{ Non-dimensional stress (= \tau / (\mu_0 V_0 / D_1))} \]

II. INTRODUCTION

Laminar mixed convection between two concentric pipes has been studied by several workers. Nguyen et al. [1], studied theoretically the water flow in a concentric annulus, the surfaces of the system are considered is other mal and the pressure gradient along the annulus is constant. The governing system of equation is solved by finite difference method. The results are obtained from water temperature between 80 and 150°C, this temperature range corresponds to a Prandtl number between 1 and 14. The author shows that the radial flow is influenced by the natural convection, thereby changing the axisymmetric shape of the velocity field and the temperature effect of the Prandtl number of the axial flow is presented for the case of \(Ra=10^4\) and a radius ratio \(Re/Ri=2\). The obtained results show that the increasing of the Prandtl number make the axial velocity fields close to that of the forced convection. A good agreement is obtained with existing experimental and numerical results. Kotake et al [2], studied numerically the same problem, two different boundary conditions: a constant heat flux, constant temperature of the outer wall. The obtained results are in good agreement with the results of Kumar [3], and Chung et al. [4], which consider the ratio \(D_0/D_{w1}\) as 0.62 and the inner cylinder subjected to a non-uniform heat flux, while the outer surface is adiabatic, the change in axial Nusselt number in this work is in good agreement that of a numerical study under the same condition. Experimentally, the heat transfer by mixed convection in an annulus was studied by Mohammed et al [7], the two concentric cylinders made of steel, \(D_0/D_1=2\), the inner tube subjected to constant heat flux, the outer tube is adiabatic, the Reynolds number is varied from 200 to 1000, while the Grashof number is varied between 6.2 \cdot 10^5 and 1.2 \cdot 10^7, the results show that the average Nusselt number can be linked with different dimensionless numbers by the correlation:

\[Nu_{av} = 2.964(Gr/PrRe)^{0.0326} \]

In this work, we studied numerically the heat transfer by mixed convection in an annulus between...
two concentric cylinders, the physical properties of the fluid are thermo-dependent and the heat losses with the external environment are considered. The objective of our study is the correlation of average Nusselt numbers and Richardson.

III. THE GEOMETRY AND MATHEMATICAL MODEL

Fig. 1 illustrates the problem geometry. We consider a long two horizontal concentric pipes having a length \(L = 1 \) m. The internal pipe with an inside diameter \(D_{i1} = 0.96 \) cm and an external diameter \(D_{1o} = 1 \) cm, the external pipe with an inside diameter \(D_{2i} = 2 \) cm and an external diameter \(D_{2o} = 2.04 \) cm. The hydraulic diameter \(D_h = D_{2i} - D_{1o} = 1 \) cm. The pipes are made of Inconel having a thermal conductivity \(K_s = 20 \text{ W/m·°K} \).

The passing of an electrical intensity along the thickness of external pipe produced a generation of heat by the Joule effect, the considered electrical intensity values are: \(I = 40, 45, 50, 55, 60 \) and \(65 \) Ampere. This heat is transferred to laminer incompressible flow of distilled water with an average velocity equal to \(5.69 \times 10^{-2} \) m/s in the annulus. The inside surface of internal pipe is insulated, at the outer surface of external pipe, the heat losses by radiation and natural convection to the surrounding air are taken into account. At the annulus entrance, we have a uniform temperature equal to 288K, the Reynolds number \(Re \) is equal to 500, the Prandtl number \(Pr \) equal to 8.082 and the Grashof numbers \(Gr \) correspond to the electrical intensities are: \(55734, 70538, 87084, 105372, 125401, \) and \(147173 \), respectively. The non-dimensional fluid viscosity and thermal conductivity variation with temperature are represented by the functions \(\mu'(T^*) \) and \(K'(T^*) \) obtained by smooth fittings of the tabulated values cited by Baehr and Stephan [8]. The combined heat transfer in the solid and fluid domains is a conjugate heat transfer problem. The physical principles involved in this problem are well modelled by the following non dimensional conservation partial differential equations with their initial and boundary conditions:

A. Modelling Equations

At \(t^* = 0 \), \(V^*_{r,0} = V^*_{\theta,0} = V^*_{z,0} = 0 \) \((1) \)

1. **Mass Conservation Equation**

\[
\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 V^*_{r,0} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r V^*_{\theta,0} \right) + \frac{\partial}{\partial z} \left(V^*_{z,0} \right) = 0 \tag{2}
\]

2. **Radial Momentum Conservation Equation**

\[
\frac{\partial V^*_r}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 V^*_r V^*_{r,0} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r V^*_{\theta,0} V^*_r \right) + \frac{\partial}{\partial z} \left(V^*_r V^*_{z,0} \right) = \frac{1}{\rho} \frac{\partial}{\partial r} \left(r \mu \frac{\partial V^*_r}{\partial r} \right) + \frac{1}{\rho r} \frac{\partial}{\partial \theta} \left(r \mu \frac{\partial V^*_r}{\partial \theta} \right) + \frac{1}{\rho} \frac{\partial}{\partial z} \left(\mu \frac{\partial V^*_r}{\partial z} \right) \tag{3}
\]

3. **Angular Momentum Conservation Equation**

\[
\frac{\partial V^*_\theta}{\partial t} + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r V^*_r V^*_{\theta,0} \right) + \frac{1}{r} \frac{\partial}{\partial z} \left(V^*_r V^*_{z,0} \right) = -\frac{1}{\rho} \frac{\partial}{\partial r} \left(r \mu \frac{\partial V^*_\theta}{\partial r} \right) + \frac{1}{\rho \theta} \frac{\partial}{\partial \theta} \left(r \mu \frac{\partial V^*_\theta}{\partial \theta} \right) + \frac{1}{\rho} \frac{\partial}{\partial z} \left(\mu \frac{\partial V^*_\theta}{\partial z} \right) \tag{4}
\]

4. **Axial Momentum Conservation Equation**

\[
\frac{\partial V^*_z}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 V^*_{r,0} V^*_z \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r V^*_{\theta,0} V^*_z \right) + \frac{\partial}{\partial z} \left(V^*_r V^*_z,0 \right) = \frac{1}{\rho} \frac{\partial}{\partial r} \left(r \mu \frac{\partial V^*_z}{\partial r} \right) + \frac{1}{\rho r} \frac{\partial}{\partial \theta} \left(r \mu \frac{\partial V^*_z}{\partial \theta} \right) + \frac{1}{\rho} \frac{\partial}{\partial z} \left(\mu \frac{\partial V^*_z}{\partial z} \right) \tag{5}
\]

5. **Energy Conservation Equation**

\[
\frac{\partial T^*}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 V^*_{r,0} T^* \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r V^*_{\theta,0} T^* \right) + \frac{\partial}{\partial z} \left(V^*_r V^*_{z,0} T^* \right) = \frac{1}{\rho} \frac{\partial}{\partial r} \left(r \mu \frac{\partial T^*}{\partial r} \right) + \frac{1}{\rho \theta} \frac{\partial}{\partial \theta} \left(r \mu \frac{\partial T^*}{\partial \theta} \right) + \frac{1}{\rho} \frac{\partial}{\partial z} \left(\mu \frac{\partial T^*}{\partial z} \right) \tag{6}
\]

Where \(G^* \) = \(\left[K_s / (Re_0 Pr_0) \right] \) in the fluid

The viscous stress tensor components are:

\[
\begin{align*}
\tau^*_{r,0} &= 2 \mu \frac{\partial V^*_{r,0}}{\partial r} \quad \tau^*_{r,\theta} &= \tau^*_{\theta,\theta} = \mu \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r \frac{\partial V^*_\theta}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r \frac{\partial V^*_\theta}{\partial \theta} \right) \right] \\
\tau^*_{r,z} &= 2 \mu \frac{1}{r^2} \frac{\partial V^*_z,0}{\partial z} \quad \tau^*_{z,0} &= \mu \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r \frac{\partial V^*_z}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r \frac{\partial V^*_z}{\partial \theta} \right) \right] \\
\tau^*_{z,0} &= 2 \mu \frac{1}{r} \frac{\partial V^*_z,0}{\partial \theta} \quad \tau^*_{\theta,z} &= \mu \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r \frac{\partial V^*_z}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(r \frac{\partial V^*_z}{\partial \theta} \right) \right]
\end{align*}
\]

The heat fluxes are:

\[
\begin{align*}
q_r^* &= -K_s \frac{\partial T^*}{\partial r} \\
q_\theta^* &= K_s \frac{\partial T^*}{\partial \theta} \\
q_z^* &= -K_s \frac{\partial T^*}{\partial z}
\end{align*}
\]
B. The Boundary Conditions

1) At the Annulus Entrance : Z*=0

*In the Fluid Domain: 0.5435 ≤ r’ ≤ 1.0435 and 0 ≤ θ ≤ 2π
V_r* = V_θ* = T* = 0, V_z* = 1 (9)

*In the Solid Domain:
0 ≤ r’ ≤ 0.5435 or 1.0435 ≤ r’ ≤ 1.0870 and 0 ≤ θ ≤ 2π
V_r* = V_θ* = V_z* = T* = 0 (10)

2) At the Annulus Exit : Z*=217.39

*In the Fluid Domain: 0.5435 ≤ r’ ≤ 1.0435 and 0 ≤ θ ≤ 2π
∂V_r* / ∂z* = ∂V_θ* / ∂z* = ∂V_z* / ∂z* = ∂ / ∂z* (K / ∂ T* / ∂ z*) = 0 (11)

*In the Solid Domain:
0.5 ≤ r’ ≤ 0.5435 or 1.0435 ≤ r’ ≤ 1.0870 and 0 ≤ θ ≤ 2π
V_r* = V_θ* = ∂ / ∂z* (K / ∂ T* / ∂ z*) = 0 (12)

3) At the Inside Wall of Internal Pipe: r*=0.5
V_r* = V_θ* = V_z* = 0 and ∂ T* / ∂ r* = 0 (13)

4) At the Outer Wall of External Pipe: r*=1.0870
V_r* = V_θ* = V_z* = 0
-K / ∂ T* / ∂ r* = (h + h_t) / D_h
h_t = ε σ (T^2 + T_a^2) (T + T_a) (15)

Nu = [h / D_h / K_w] = [0.6 + (0.387 Ra^{1/3} / [1 + (0.559 / Pr_w)^{1/3}])] (16)

C. Nusselt Number

At the solid-fluid interface (r*=1.0435) the local Nusselt number is defined as:
Nu (θ, Z) = h (θ, Z) / k = [1 / ∫ (r’, θ, z) dz’] (17)

The axial Nusselt number is defined as:
Nu (z) = 1 / (2 π) ∫ _0 ^2π Nu (θ, z) dθ (18)

The average Nusselt number for the whole solid-fluid interface is defined as:
Nu_s = 1 / (2 π) ∫ _1 ^2π ∫ _0 ^217.39 Nu (θ, z) dz’ dθ (19)

IV. THE NUMERICAL METHOD

For the numerical solution of modelling equations, we used the finite volume method as described by Patankar [10]. The using of this method involves the discretization of the physical domain into a discrete domain constituted of finite volumes where the modelling equations are discretized in a typical volume. We used a temporal discretization with a truncation error of (Δ t)^2 order. The mesh used contains 26×44×162 points in the radial, azimuthal and axial directions. The considered time step is Δ t = 5×10^{-4}. The accuracy of the results of our numerical code has been tested by the comparison of our results with those of Nouar[11] who studied numerically the effect of the dynamic viscosity of the mixed convection between two concentric horizontal pipes. The inner cylinder and the outer cylinder are subjected to a constant heat flux. The controlling parameters of the problem are: Re = 35, Pr = 557.3, Gr = 6000, L/D_h = 125. In Fig. 2 we illustrate the axial temperature variation at the top (θ = 0) and bottom (θ = π) of the external interface (fluid-outer pipe).

Fig. 2 Axial Evolution of the interface temperature (fluid-Outer pipe); a Comparison with the Results of Nouar[5].

It is seen that there is a good agreement between our results and theirs.

V. RESULTS AND DISCUSSIONS

A. Development of the Secondary Flow

The obtained flow for the considered cases is characterized by main flow in the axial direction and secondary flow in the radial direction due to the Coriolis force. Qualitatively, we note the similarity of results for the six study cases. Quantitatively, the effect of mixed convection becomes increasingly important with the increase of volumetric heating. For this, the figures presented are those of the higher volumetric heating, case of Gr = 147173. In Fig. 3, we present the secondary flow at the annulus exit (Z*=100). The transverse movement is explained as follows: the hot fluid moves...
along the hot wall from the bottom of the outer tube ($\theta=\pi$) upwards ($\theta=0$) and moves down from the top to the bottom along the inner tube. The vertical plane passing through the angles ($\theta=0$) and ($\theta=\pi$) is a plane of symmetry.

![Fig. 3. Secondary Flow at the Exit of the Annulus for Gr=147173](image)

The transverse flow in the (z^*, φ) plane is represented by two similar but counter rotating cells. We noticed that the centre of the rotating cells moves downward continuously along the axial direction.

B. Development of the Axial Flow

At the entrance, the axial flow is axisymmetric, after this latter is influenced by the transverse movement of the fluid. The maximum axial velocity is all the time at the top of the annulus because the fluid viscosity decreased from bottom to top. In fig. 4, we present the axial flow distribution at the exit of the annulus.

![Fig. 4Axial Velocity Profiles at the Exit of the Annulus for Gr=147173](image)

C. Development of the Temperature Field

In the reference case (forced convection), the distribution of the fluid temperature in the absence of transverse motion is axisymmetric. For a given section, the isotherms are concentric circles with a maximum temperature on the inner wall of the external cylinder and a minimum temperature on the outer wall of the internal cylinder. In the presence of volumetric heating, a transverse flow exists and thus changes the axisymmetric distribution of fluid and pipe wall temperature and gives it an angular variation, this variation explained as follows: the hot fluid near the hot pipe wall moves upwards under the buoyancy force effect, the relatively cold fluid descends down near the internal pipe. This movement of the secondary flow is the cause of the azimuthally temperature variation. The obtained results show that at given section, the maximum temperature T^* is all the time located at $r=1$ and $\theta=0$ (top of solid-fluid interface), because the hot fluid is driven by the secondary motion towards the top of the annulus. The minimum temperature is within the core fluid, in the lower part of the annulus at $\theta=\pi$. In fig. 5, we present the polar temperature distribution at the exit of the annulus for $Gr=147173$.

![Fig. 5. Isotherms at the Exit of the Annulus for Gr=147173](image)

D. The Nusselt numbers

The phenomenon of heat transfer has been characterised in terms of circumferentially Nusselt numbers calculated at the inner wall of external pipe, which is obtained by (19). The variation of local Nusselt number of the solid-fluid interface is presented in fig. 8 for $Gr=147173$. From the entrance to the exit, we notice the large axial and angular variations of local Nusselt numbers, it takes minimum value at ($\theta=0$) and maximum value at ($\theta=\pi$).

Fig. 9 shows the axial variation of Nusselt number for the seven studied cases. At the zone of entrance, the axial Nusselt number decreases rapidly for all studied cases. After, it increases and takes maximum value at the exit of annulus equal to: 7.58, 7.96, 8.35, 8.74, 9.06
and 9.45 for $Gr = 55734, 70538, 87084, 105372, 125401,$ and 147173 respectively. The axial Nusselt numbers increases with the increase of volumetric heating.

![Fig. 8 The Local Nusselt Number Variation for Gr =147173.](image)

![Fig. 9 The Axial Nusselt Number Variation for Different GrashofNumbers](image)

In Tab. 1 we present the average Nusselt numbers of all studied cases:

<table>
<thead>
<tr>
<th>Gr</th>
<th>55734</th>
<th>70538</th>
<th>87084</th>
<th>105372</th>
<th>125401</th>
<th>147173</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ri</td>
<td>0.223</td>
<td>0.282</td>
<td>0.348</td>
<td>0.421</td>
<td>0.502</td>
<td>0.589</td>
</tr>
</tbody>
</table>

The results obtained allowed us to model the average Nusselt number of the mixed convection in function of Richardson number, we found that the results with the parameters used are correlated with the correlation:

$$Nu_4 = 9.9130 Ri^{0.0816}$$ (22)

VI. CONCLUSION

This study considers the numerical simulation of the three dimensional mixed convection heat transfer in horizontal annulus, the external pipe is heated by an electrical intensity passing through its small thickness and the internal pipe is insulated. The obtained results show that:

* The dynamic and thermal fields for mixed convection are qualitatively and quantitatively different from those of forced convection.
* Although the volumetric heat input in the solid thickness is constant, the heat flux at the solid-fluid interface is not constant: it varies with θ and z, that is a characteristic of the considered mixed convection.
* The azimuthally variation of temperature at a given section is important; this phenomenon is demonstrated by the circumferential temperature variation of the wall. There is a large temperature wall difference between top and bottom of the external pipe.
* The physical properties are thermo-dependent (the dimensionless dynamic viscosity varies from 1.018 at the entrance to 0.4171 at the exit).
* For the forced convection, the average Nusselt number is 8.803. Thus, for the mixed convection, the parameters used are well correlated with the correlation: $Nu_4 = 9.9130 Ri^{0.0816}$.

VII. REFERENCES

