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Abstract   
 
The authors propose in this work, the numerical study of the phenomenon of the natural 
laminar permanent convection in an annular space, situated between two horizontal eccentric 
cylinders and tilted of an angle α compared to the horizontal one. The enclosure considered is 
of practical interest (Storage, Isolation). The annular space is filled by a Newtonian and 
incompressible fluid. The number of Prandtl is fixed at 0.7 (case of the air) but the number of 
Grashof varies. By using the approximation of Boussinesq and the vorticity-stream function 
formulation, the flow is modeled by the differential equations with the derivative partial:  the 
equations of continuity and the momentum are expressed in a frame of reference known as 
"bicylindrical", to facilitate the writing of the boundary conditions and to transform the 
curvilinear field into a rectangular one. They examine the effect of the Grashof number, the 
parietal thermal conditions and tilt of the system. 
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omenclature 

         a Constant seen in the eccentric coordinates   (m) 
C1   Radius ratio 
C2 Eccentricity of the  annular space formed by  two 
eccentric cylinders  
cp  Specific heat at constant pressure    (j.kg-1.k-1) 
g  Gravitational acceleration                    (m.s-2) 
Gr  Grashof number defined by    

h  Dimensional metric coefficient       (m) 
H  Dimensionless metric coefficient 
Nu  Local Nusselt number   
Nu  Average Nusselt number 

Pr   Prandtl number defined by  
λ

ρν
= pc  
    Pr  

q Heat flux density                  (W.m-2) 
r1, r2  Inner and outer radius respectively   (m) 
SФ  Source term  
T  Fluid’s temperature                          (K) 
T1  Hot wall temperature                 (K) 
T2  Cold wall temperature                (K) 
∆T  Temperature deference ∆T=T1-T2  (K) 
Vη,Vθ Velocity components η et θ               (m.s-1) 
V  Velocity vector                                (m.s-1) 
Greek letters 
α Angle of inclination                                 (°) 
β Thermal expansion coefficient              (K-1) 
Гϕ  Diffusion Coefficient 
λ  Thermal conductivity                  (W.m-1.K-1) 
υ  Kinematic viscosity                           (m2. s-1) 
ρ  Fluid density                               (kg. m-3) 
η ,θ,z bicylindrical coordinates  
Ψ  Stream function                  (m2. s-1) 
ω  Vorticity                          (s-1) 
ϕ  General function 
Π  Stress tensor 
Superscripts 
+  Dimensionless parameter 
Subscripts 
i  Inner 
e  Outer 
Ni  Points number along the coordinate η 
NN Points number along the coordinate θ 
 

1. Introduction 
  Heat transfer by natural convection, in the annular 
spaces formed by horizontal eccentric cylinders, was the 
subject of many theoretical and experimental studies 
because of their importance in many engineering 
applications. 

  Nobari et al [1] studied numerically the fluid flow 
and heat transfer in curved eccentric annuli. A second order 
finite difference method based on the Projection algorithm 
is implemented to solve the governing equations including 

the full Navier–Stokes, the continuity, and the energy 
equations in a toroïdal coordinate system.  

It is also shown that in contrast to straight eccentric annuli, 
heat transfer rates can be augmented in the eccentric curved 
annuli comparing with the straight concentric annuli at the 
large dean numbers.  Shklyar et al [2] analyzed 
the convergence rate of a methodology for solving 
incompressible flow in general curvilinear co-ordinates. 
Overset grids (double-staggered grids type), each defined 
by the same boundaries as the physical domain are used for 
discretization. Dukaa et al [3] proposed two different 
problems as approximations of the usual system modelling 
natural convection under the Oberbeck–Boussinesq 
assumptions. The average Nusselt number is also 
estimated. Shi et al [4] applied this model to simulate 
natural convection heat transfer in a horizontal concentric 
annulus bounded by two stationary cylinders with different 
temperatures. Velocity and temperature distributions as 
well as Nusselt numbers were obtained for the Rayleigh 
numbers ranging from 2.38x103 to 1.02 x 105 with the 
Prandtl number around 0.718.  

Roschina et al [5] investigated Natural convection of gas 
(Pr = 0.7) between two horizontal coaxial cylinders with 
uniform internal heat generation. It has been established 
that in such a system there exist two types of fluid flow for 
low Rayleigh numbers with different vortex structure. 
Optimization of the corresponding coaxial laser system has 
been analyzed.   

 In this work we have numerical simulation which uses 
finite volumes method, exposed by Patankar [6], 
bicylindrical coordinates cited by Moon [7] and vorticité-
stream function formulation cited by Nogotov [8] to solve 
the equations.  

2. Problem formulation and basic equations 

  Let's consider an annular space, filled with an 
incompressible Newtonian fluid, situated between two 
eccentric cylinders. Figure 1 represents a cross-section of 
the system.  

 
Fig. 1 a cross-section of the system 

  The inner and outer cylindric walls are isotherms 
which are held at temperatures T1 and T2 with T1>T2, in a 
first case of heating, in a second case of heating, we impose 
on the inner cylinder a constant heat flux density. The 

N 
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physical properties of the fluid are constant, except the 
density ρ whose variations are at the origin of the natural 
convection.  Viscous dissipation is neglected, just as the 
radiation (emissive properties of the two walls being 
neglected).   We admit that the problem is 
bidimensionnal, permanent and laminar. 

- Continuity equation: 
                                    (1)  

Momentum equation: 
                                    (2) 

- Heat equation: 
                                                 (3) 

The coordinates are: 

                                                  (4) 

The equations (1), (2) and (3) become: 

                                           (5) 

                                                            (6) 

                                   (7) 

After the introduction of vorticity defined by: 

                                                    (8)                                                                                                 

                                              (9) 

 We pass directly to the writing dimensionless 
equations, by posing the following dimensionless 
quantities: 

Dh = a  

,  , , , 

 and   

 The equations (5), (6), (7) and (8) become : 

                          (10)  

                                               (11)

   

        (12) 

                        (13) 

  The boundary conditions are the following ones: 

  - Inner cylinder wall Condition (η=ηi=constant): 

, 

  and 

  

- Case  I :
 

                            

      - Case II :     

   - Outer cylinder wall Condition (η=ηe=constant): 

, 

and 
 

  

The temperatures distribution obtained local Nusselt 
number value relation: 

                                               (14)  

 The average Nusselt number is: 

                                       (15) 

3. Numerical Formulation  

 To solve the equations (11) and (12) with the associated 
boundary conditions, we consider a numerical solution by 
the method of finite volumes, exposed by Patankar [6]. For 
the equation (13), we consider a numerical solution by the 
method of the centered differences, exposed by Nogotov 
[8]. 
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 Figure 2 represents physical and computational domain. 

 
                                                                   

Fig. 2 physical and computational domain 

 We cut out the enclosure according to directions x and 
y from the whole of elementary volumes or "control 
volumes" equal to «∆x.∆y.1». ». The problem is two-
dimensional, the thickness in z direction is assumed to the 
unity. 

  The center of a typical control volume is a point P 
and the center of its side faces "east", "west", "north" and 
"south", are the points e, w, n and s, respectively. Four 
other control volumes surround each interior control 
volume. The centers of these volumes are points E, W, N 
and S. 

  
Fig. 3 A typical control volume and its neighbors in a 

computational domain 

3.1.  Discretization equation transfer of a 
variable ϕ 

 The general differential equation is: 

       (16) 

We illustrate sources and diffusion coefficients in table 1 

Table 1: Sources and diffusion coefficients 

 The discretization equation is obtained by integrating 
the conservation equation over the control volume shown 
in figure 3, after some manipulations we have the final 
discretization equation: 

       (17) 

 The equation coefficients are well defined in Patankar 
[6]. The power law scheme is used to discretize the 
convective terms in the governing equations. 

4. Results and discussion 

 We consider three annular spaces formed by eccentric 
cylinders with three values of inclination angle (α=0°, 45° 
and 90°) and relative eccentricity (C2=0.4). 

4.1. Grid study 

   In this study several grids were used 
arbitrarily, to see their effect on the results. Table 2 shows 
us the variation of average Nusselt number and the 
maximum of the stream function value according to the 
number of nodes for each grid. We choose the grid 
(101x111). 

 Gr=103 Gr=5.104 Gr=105 Gr=106 

nixnn ψmax 
|Er| 

% 
ψmax 

|Er| 

% 
ψmax 

|Er| 

% 
ψ max 

|Er| 

% 

21x31 1.32 - 5.23 - 8.86 - 34.99 - 

31x41 1.34 1.49 5.28 0.94 9.04 1.99 34.41 1.65 

41x41 1.34 0.00 5.29 0.19 8.93 1.21 33.99 1.65 

51x61 1.33 0.75 5.26 0.57 8.81 1.34 33.58 1.17 

61x71 1.31 1.50 5.20 1.14 8.72 1.02 33.29 0.83 

71x81 1.29 1.52 5.15 0.96 8.64 0.91 33.06 0.67 

81x91 1.28 0.77 5.09 1.16 8.56 0.92 32.85 0.63 

91x101 1.27 0.78 5.04 0.98 8.46 1.16 32.64 0.63 

101x111 1.25 1.57 4.98 1.19 8.37 1.06 32.45 0.58 

111x121 1.24 0.80 4.93 1.00 8.30 0.83 32.29 0.49 

Table 2 variation of average Nusselt number and the 
maximum of the stream function value according to the 
number of nodes 

4.2. Numerical code validation 

  Kuehn et al. [9] developed a numerical study on 
natural convection in the annulus between two concentric 
cylinders and horizontal with a radius ratio was taken equal 
to 2.6, they calculated a local equivalent thermal 
conductivity, defined as the ratio of a temperature gradient 
in a convective heat exchange on a temperature gradient in 
a conduction exchange: 

Γϕ Sϕ 

T+ 1/Pr 0 

ω+   1 

 

computational domain Physical Domain  
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 They calculated an average value of the conductivity. 

 We applied our computer code to this case and we 
compared the average Nusselt number value of our results 
with theirs, we notice that they are in concord. Table 3 
illustrates this comparison well. 

Pr 
0,70 0,70 0,70 0,70 Numerical 

study Ra 102 103 6x103 104 

Kuehn [9] 1,000 1,081 1,736 2,010 

our calculs 1,000 1,066 1,730 2,068 
Inner  

wall 
|E (%)| 0,000 1,388 0,346 2,886 
Kuehn [9] 1,002 1,084 1,735 2,005 

our calculs 1,002 1,066 1,736 2,078 
Outer 

wall 
|E (%)| 0,000 1,661 0,058 3,641 

Table 3 Comparison of the average thermal conductivity of 
Kuehn [9] with our results 

4.3. First condition of heating: isotherm inner 
cylinder 

4.3.1. Influence of the Grashof number  

4.3.1.1. Isotherms and streamlines 
  Figures 4 and 5 represent the isotherms and the 
streamlines for different values of the Grashof number 
when the relative eccentricity C2=0.4 and α=90°. 

 These figures show that the structure of the flow is 
bicellular. The flow turns in the trigonometrically direction 
in the left side and in the opposite direction in the right one.     

 When the Grashof number is equal to 104, the heat 
transfer is essentially conductive, so the isotherms of figure 
3 are almost parallel to the walls. Nevertheless there is a 
movement of the fluid: the particles, which warm up on the 
hot wall, tend to rise along this one, then to go down again 
along the cold wall. Thus the flow is organized in two 
principal cells which turn very slowly in opposite 
directions. 

 For Gr=5.104 the isotherms change appreciably to 
follow the direction of the flow, and the values of the 
streamlines mentioned on the same figure increase also 
appreciably, which translates a transformation of the 
conductive transfer to the convective transfer.  

 However, for Gr=106 the isothermal lines are 
modified and eventually take the form of a mushroom. The 
temperature distribution is decreasing in the hot wall 
towards the cold wall. The direction of the deformation of 
the isotherms is consistent with the direction of rotation of 
the streamlines. In laminar flow, we can say that under the 
action of the movement of particles flying from the hot 
wall at the symmetry axis, the isothermal lines are away 
from the wall there. The values of the stream function 
increase which means that convection increases. 

 
Fig. 4 Isotherms and streamlines for C2=0.4, α=90° and 
Gr=104 

 

Fig. 5 Isotherms and streamlines for C2=0.4, α=90° and 
Gr=5.104 

 
Fig. 6 Isotherms and streamlines for C2=0.4, α=90° and 
Gr=106 

4.3.2. Local Nusselt Number 

 We determine the local Nusselt numbers for which 
changes along the walls are closely related to distributions 
of isotherms and isocourants, so that, qualitatively, these 
variations and distributions can often be deduced from each 
other. For example, if we consider a current point on a wall 
following a coordinated observation of a monotonic 
decrease local Nusselt number corresponds to a flow 
directed along this coordinate, the observation of an 
increase corresponds to a directed flow in opposite 
directions. 

4.3.3. Variation of local Nusselt number on the 
inside and outside wall  
 

     Figures (7-12) illustrate the 
variation of local Nusselt number on the inner and outer 
cylinder wall. We note that with the increase of Grashof 
number, the value of the local Nusselt number increases 
and with the decrease of Grashof number, the local Nusselt 
number decreases. 
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Fig. 7 Variation of local Nusselt number  

in the inner wall 

 
Fig. 8 Variation of local Nusselt number  

in the outer wall 

 
Fig. 9 Variation of local Nusselt number  

in the inner wall 

 
Fig. 10 Variation of local Nusselt number  

in the outer wall 

 
Fig. 11 Variation of local Nusselt number  

in the inner wall 

 
Fig. 12 Variation of local Nusselt number  

in the outer wall 

4.4. Relative eccentricity effect  

 Here we examine the effect of the relative eccentricity 
C2. For the value of the inclination angle α=90 °, we used 
three values of C2 (0.1, 0.2 and 0.4). 

4.4.1. If the relative eccentricity C2 = 0.1 
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 Figure 13   shows that the isotherms are parallel to the 
walls, and the streamlines are symmetrical compared to the 
median fictitious vertical plane. The Stream function 
values are very low, this expresses that is the pseudo-
conduction which dominates. 

 
Fig. 13 Isotherms and streamlines for C2=0.1, α=90° and 

Gr=106 

4.4.2. If the relative eccentricity C2 = 0.2   

 Figure 14 shows that the isothermal lines are modified 
significantly, and values of the stream function mentioned 
in the same figure also increase substantially reflecting a 
convective transfer, but remains relatively low. 

 
Fig. 14 Isotherms and streamlines for C2=0.2, α=90° and 

Gr=106 

4.4.3. If the relative eccentricity C2 = 0.4 

 Figure 15 shows that for large values of Grashof 
number, the fluid motion is more important in the 
enlargement area. 

  The values of the stream function increases with 
increasing in Grashof number for all geometries 
considered. 

 
Fig. 15 Isotherms and streamlines for C2=0.4, α=90° and 

Gr=106 

4.5. Influence of the relative eccentricity C2 

 Since this study examines the natural convection in an 
annular space whose geometry varies with the eccentricity, 
the equivalent thermal conductivity is the parameter most 
appropriate to compare the heat transfer involved in the 
various geometries considered. The Nusselt number is 
proportional to the overall value of the rate of heat transfer 
consists of the conduction and convection modes, 
considering that the equivalent thermal conductivity is the 
ratio of total heat transfer between the inner and outer 
cylinders, the number of Nusselt is not a good indicator of 
heat transfer by comparing the different geometries. 

       The local equivalent thermal conductivity is defined as 
the ratio of local Nusselt number of a surface in the vicinity 
of which a fluid is moving in the local Nusselt number that 
would be determined if the fluid was static. The overall 
equivalent thermal conductivity is given by the ratio of 
average Nusselt numbers for either case. 

       By varying the value of the relative eccentricity of 0.1 
to 0.4 for an angle of inclination α = 90 ° and a Grashof 
number equal to 106, we note that the local equivalent 
thermal conductivity increases with increase in relative 
eccentricity, reflecting the intensification of natural 
convection. 

  

 
Fig. 16 Variation of the local equivalent thermal 

conductivity of the inner wall depending  

on the θ angle 

CONCLUSION 

 We have established a mathematical model reflecting 
the transfer of movement within the fluid and heat through 
the walls of the space annulus. This model is based on the 
assumption of Boussinesq and the two-dimensionality of 
the flow. We have developed a calculation code, based on 
the finite volume method, which determines thermal and 
dynamic fields in the fluid and the dimensionless local and 
average Nusselt numbers on the walls of the space annulus, 
depending on the quantities characterizing the state of the 
system. The influence of the Grashof number and 
inclination of the system, on the flow was 
particularly.examined. 
  The results of numerical simulations have shown that 
conduction is the regime of heat transfer dominant for 
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Grashof numbers lower than 5.104. For Grashof numbers 
greater than 5.104, the role of convection becomes 
dominant, and we have seen that the transfers are better 
when our system has elements of symmetry. 
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