Synthesis and characterization of the hybrid Ni-TiO$_2$/PANI for an efficient hydrogen photoproduction under visible light

Mohamed Faouzi Nsiba,b,*, Samira Saafia, Ali Rayesa,b, Ammar Houasa,c

aURCMEP (UR11ES85), Faculty of Sciences, University of Gabès, 6029 Gabès, Tunisia
b National School of Engineers (ENIG), University of Gabès, 6029 Gabès, Tunisia
cAl Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Department of Chemistry, Riyadh 11623, Saudi Arabia

Reçu le 12/05/2014 – Accepté le 24/06/2014

Abstract

Ni$_x$Zn$_{1-x}$O/Polyaniline hybrid photocatalysts are synthesized by the impregnation method at ambient temperature and used for hydrogen photoproduction experiments. XRD, UV-Vis DRS, SEM and TGA are used to characterize the prepared materials. It is shown that the Ni$^{2+}$ amount doped into ZnO controls its morphology and enhances its photoactivity for H$_2$ generation. Polyaniline (PANI) is shown to sensitize ZnO and to extend its light absorption toward the visible region. The hybrid photocatalyst with 10 mol. % Ni$^{2+}$ and 10 wt. % PANI shows the maximum photocatalytic H$_2$ production for one hour of visible irradiation: ~558 μmole while only ~178 μmole in the presence of pure ZnO. It is also observed that the hydrogen photoproduction efficiency depends strongly on the nature of the sacrificial electron donor and increases in the order: thiosulfate > sulfide > propanol.

Key words: photocatalysis; Ni doped ZnO; polyaniline; hydrogen production.

Résumé

Des photocatalyseurshybrides Ni$_x$Zn$_{1-x}$O/Polyanilinesont synthétisés parla méthoded'imprégnation à températureambiante et utilisées pour des expériences dephotoproduction d'hydrogène. XRDX, UV-VisSRD, MEBetATG sont utilisées pour caractériser les matériaux préparés. Il est montré que la quantité Ni$^{2+}$ dopée en ZnO contrôle sa morphologie et améliore sa photoactivité pour la production d'H$_2$. Polyaniline (PANI) permet de sensibiliser ZnO et d'étendre sa absorption de la lumière vers la zone visible. Le photocatalyseurhybride avec 10 mol. % en Ni$^{2+}$ et 10 mass. % en PANI permet la productionphotocatalytique maximale de H$_2$pendant une heure d'irradiation visible: ~558 μmol, tandis que seulement ~178 μmol en présence de ZnOpur. Il est également observé que l'efficacité de la photoproduction d'hydrogène dépend fortement de la nature du donneur sacrificial d'électrons et augmente dans l'ordre: thiosulfate > sulfure > propanol.

Mots clés : photocatalyse, Ni doped ZnO, polyaniline, production d’hydrogène, dissociation de l’eau.

ملخص

وقع تحضير المحفزات الضوئية الهجينة من نوع Ni-ZnO-Polyaniline للاستخدام في التجارب للإنتاج الضوئي للهيدروجين. تقنيات TGA وUV-Vis DRS وSEM وXRD وجدت أن كمية كاتيونات النيكل المزودة في أكسيد الزنك لها تأثير على شكل الأكسيدة وتحسين فاعليته في التفاعل الضوئي للهيدروجين. لجودة ألياف النانو في التفاعل الضوئي للهيدروجين، البولي أليافين ساعد على تحسين حساسية أكسيد الزنك للضوء وتمت مناطق التكثيف للإلكترونات المتنوعة. المحفز الضوئي المحتوي على 10 mol. % Ni$^{2+}$ و10 mass. % PANI ينتج أقصى إنتاج للهيدروجين لمدة ساعة واحدة من التعرض للأشعة المرئية: ~558 μmol، ولكنه يقل قليلاً عند ~178 μmol. تبين أن إنتاج الهيدروجين يعتمد على الطريقة المضخحة المستخدمة للإلكترونات، وهذه الكفاءة تزداد حسب النظام التالي: thiosulfate > sulfide > propanol.

المصادر المقتضبة : تحرير ضوئي، نيك-أكسيد الزنك، بولي أليافين، إنتاج الهيدروجين، تقسيم الماء

© Université Constantine 1, Algérie, 2014
1. Introduction

Hydrogen is considered the future fuel that may solve the global energy and environmental problems. It is clean and energy efficient [1, 2]. Produced without carbon dioxide or any other greenhouse gas affecting the climate, hydrogen can form the basis of a truly sustainable energy [3, 4]. At present, several hydrogen-producing technologies exist, such as those based on fossil fuels, natural gas reforming, bio-derived liquids reforming, coal and biomass gasification, thermochemical and nuclear production, or water electrolysis [5-9]. However, these technologies are either expensive or environmentally unfriendly. Heterogeneous photocatalysis is a low cost and environmentally-friendly procedure that has been well-studied for the wastewater/air treatment [10-13]. In recent years, photocatalytic water splitting into hydrogen has attracted many researchers. But, when developing photocatalysts, it is particularly important to find a material with a lower energy band gap (Eg) that enables the efficient use of solar energy to produce hydrogen [14-17].

Zinc oxide (ZnO) has been considered a promising semiconductor to support the future hydrogen economy because it has distinctive optoelectronic, catalytic, and photochemical properties [18]. The quantum efficiency of ZnO is also significantly larger than titanium dioxide (TiO₂) [19, 20]. However, the energy conversion efficiency from solar to hydrogen by photocatalytic water splitting is still low, due to these main reasons: (i) Recombination of photogenerated electron/hole pairs, (ii) Fast backward recombination of hydrogen and oxygen into water, and (iii) Inability to use the visible part of the sunlight.

To resolve the above problems and make solar photocatalytic hydrogen production feasible, first we need to use chemical additives (electron donors, noble metals, carbonate salts,...) to avoid the electron/hole and O₂/H₂ recombinations [21]. Second, it is needed to modify the photocatalyst to make it active under visible light [22, 23]. Particularly, it is reported that modifying ZnO with transition metal ions such as Ni²⁺ can inhibit charge recombination [24]. Besides, the Ni²⁺ ions can increase the surface defects and presumably shift the light absorption towards the visible region [25]. This may be reached by the p-n junction concept. In this concept, the hetero-junction of a p-type material such as NiO with its n-type counterpart (ZnO) induces an internal electric field which may extend the probability of electron-hole separation [26].

On the other hand, it is reported that the association of ZnO with a functional polymerinahybrid material is expected to improveits morphology. In addition, organic molecules allow a better coverage of the solar emission spectrum, especially when the organic and inorganic networks are interpenetrated [27-29]. The hybrid entity is anticipated to benefit from the synergistic effects of physical and chemical interactions which occur between the organic and inorganic components and, so, it may be used as a photocatalyst for efficient H₂ production under visible and solar lights [30-32]. Polyaniline(PANI) is among the most convenient conductive polymers [33]. It has extended π-conjugated electron systems and is an efficient electron donor and a good hole transporter upon visible-light excitation [34]. PANI has environmental, electrical, optical and electrochemical properties and can be chemically synthesized electrochemically by adding nickel chloride as precursors [35-38]. Furthermore, it has an hightransferofcharge carriers and a strong absorption in the visible spectrum due to its low band gap (2.8 eV) [34]. Economically, PANI is preferred because its monomer (aniline) is among the cheapest in the market. Consequently, PANI is a well-synthesizing candidate for the organic-inorganic hybrid photocatalyst to produce H₂ from water splitting under visible/solar lights [39].

The aim of this study is to prepare an organic-inorganic hybrid photocatalyst of high photocatalytic activity in water-splitting reaction. The hybrid material is based on Ni doped ZnO as the inorganic component and PANI as the organic one. A series of factors influencing the activities of Ni-ZnO/PANI photocatalysts for H₂ evolution have been investigated. It is found that the well-prepared Ni-ZnO/PANI composite shows a high photocatalytic efficiency in sustainable hydrogen production from water splitting under the visible light irradiation.

2. Experimental Part

2.1. Synthesis of Ni-ZnO materials

The Ni-doped ZnOis prepared by homogeneous precipitation using zinc acetate, oxalic acid, and nickel chloride as precursors. 4.8 g of zinc acetate and 2.5 g of oxalic acid are dissolved in 50 ml of distilled water under stirring for 2 h at room temperature. An amount of nickel chloride, which corresponds to Ni to ZnO molar ratio equal to 1, 5 and 10 %, respectively, is then added to the solution. The obtained precipitate is filtered, washed with methanol, dried in an oven at 80°C for 24 h, and then heated at 400 °C for 3 h to get a Ni doped zinc oxide (Ni-ZnO).

Pure ZnO is prepared using the same method, but without adding the nickel chloride precursor.
2.2. Synthesis of polyaniline (PANI)

The method used in our preparation of PANIs is the oxidative polymerization of aniline monomer by ammonium persulfate (APS) in aqueous solution of H₂SO₄ at pH of 1 to 3. In a typical synthesis, 50 mL of H₂SO₄ solution containing 1.4 g of APS was added drop by drop to 50 mL of H₂SO₄ solution containing 1.82 mL of aniline. The polymerization was allowed to proceed by stirring the mixture for 2 h at ambient temperature. The obtained dark green precipitate corresponding to PANI was then filtered and washed with a large amount of distilled water followed by methanol. The resulting PANI was finally dried for 24 h at 80 °C.

2.3. Synthesis of Ni-ZnO/PANI composites

The Ni-ZnO/PANI composites were prepared by the direct impregnation method. In a typical procedure, 1 g of Ni-ZnO nanoparticles was dispersed in 30 mL of aqueous PANI solution during one hour under stirring. The concentration of the PANI aqueous solution was such as the wt% were filtered, k.λ / β.cosØ, where k is the shape factor of collected and volumetrically d water samples. Reflectance spectra were analyzed under ambient condition in the wavelength range of 200-800 nm.

TGA experiments of the prepared pure ZnO and Ni-ZnO/PANI composite were performed with aSETERAMthermobalance, in the temperature range of 20–500°C, under a dynamic atmosphere of argon. Samples were put into platinum crucibles, at a heating rate of 10 °C min⁻¹.

2.5. Photocatalytic hydrogen production experiments

The typical liquid-phase photocatalytic reactor [40, 41] used in our laboratory for H₂ production is shown in Fig. 1. This photocatalytic reactor of 100 mL was irradiated with an outer 250 W halogen visible lamp. In each experiment, 1 g.L⁻¹ of a photocatalyst and 0.2 M of Na₂S₂O₃ as a sacrificial electron donor were used. Sodium carbonate salt (Na₂CO₃) was used as electron mediator to prevent the fast backward reaction of hydrogen and oxygen [21]. Before illumination, the aqueous slurry was deaerated with N₂ gas and kept in the dark for 30 min. During irradiation, the evolved H₂ gas was collected and volumetrically-measured in a water displacement graduated burette. All experiments were carried out under the same conditions and blank test was performed to determine the H₂ photolysis volume. However, in the absence of light, the dark control showed no noticeable H₂ production.

3. Results and discussion

3.1 Materials characterization

3.1.1 X-ray diffraction

The Fig. 2 shows the XRD patterns of the fine powders of prepared pure ZnO and NiₓZn₁₋ₓO. They showpeaksat positions 20 =31.63°, 34.22°, 36.03°, 47.3°, 56.43°, 62.79°, 66.31°, 67.84° and 69.05°, which correspond to thereflexionplanes(100), (002), (101), (102), (110), (103), (200), (112) and (201), respectively. They are
in good agreement with the standard JCPDS file (36-1451) for the hexagonal wurtzite structure of ZnO. Moreover, no change in the wurtzite structure of ZnO after Ni doping is observed, which indicates that Ni$^{2+}$ occupies the Zn$^{2+}$ site into the crystal lattice [42]. An additional peak corresponding to NiO is shown at 2θ = 43.20° in the Ni$_{0.1}$Zn$_{0.9}$O pattern. This new peak clearly indicates that a segregation phase occurred in the Ni$_{0.1}$Zn$_{0.9}$O sample. So, a p-n heterojunction may take place between NiO and ZnO oxides in the Ni doped ZnO sample, which is expected to enhance the electron/hole separation.

On the whole, the diffraction peaks are sharp, narrow and symmetrical with a low and stable baseline, suggesting that the samples are well-crystallized [43].

Fig. 2. XRD profiles of prepared pure ZnO and Ni$_{0.1}$Zn$_{0.9}$O.

The average values of the crystalline size of the samples are calculated using the Debye-Scherrer equation and the half width of the (101) crystal plane. It is found that the ZnO crystalline size varies weakly with the Ni doping and takes the average values of 22.6 and 25.7 nm for ZnO and Ni$_{0.1}$Zn$_{0.9}$O, respectively. This is probably due to the slight difference between the ionic radius of Zn$^{2+}$ (0.74 Å) and Ni$^{2+}$ (0.69 Å).

3.1.2 Scanning Electron Microscopy (SEM)

Fig. 3. SEM images of bare ZnO nanoparticles (a), Ni$_{0.01}$Zn$_{0.99}$O (b), Ni$_{0.05}$Zn$_{0.95}$O (c) and Ni$_{0.05}$Zn$_{0.95}$O/PANI$_3$ (d) photocatalysts.

The influence of different molar ratios of Ni$^{2+}$ on the surface morphologies of the photocatalysts was studied by SEM (Fig.3). The SEM images of pure ZnO (a) and 1 % Ni-doped ZnO (b) show low aggregation of particles which have spherical morphology and are evenly distributed on the whole surface. However, the increase of the Ni content to 5 mol. % changes drastically the morphology of the Ni-ZnO particles (c). Thus, the Ni$_{0.05}$Zn$_{0.95}$O particles are more aggregated and have nanorods-like morphology. The nanorods are quite uniform in size. Similar morphology is observed in the Ni$_{0.1}$Zn$_{0.9}$O sample (not shown here). These observations show that Ni content controls the growth of Ni doped ZnO crystals. Ni$^{2+}$ anions may act as a catalyst to promote the one dimensional growth of ZnO nanocrystals. In this case, Ni$^{2+}$ may act as a nucleation site and help the growth of arrays of ZnO when the Ni$^{2+}$ content reaches 5 mol. %. The nanorods-like morphology is maintained when Ni$_{0.05}$Zn$_{0.95}$O is hybridized with PANI (d). The nanorod morphology is expected to enhance the photosensitivity as well as the photoresponse [44].

3.1.3 UV-Vis diffuse reflectancespectra (DRS)

UV–Vis diffuse reflectance spectroscopy, which is generally used to detect the presence of framework and non-framework incorporated transition metal species in the structures and to distinguish the coordination states of the metal ions [45, 46], was used here to provide some insights into the interactions of the photocatalyst materials with photon energies.

Fig. 4. UV–Vis spectra of ZnO, Ni$_{0.01}$Zn$_{0.99}$O and Ni$_{0.05}$Zn$_{0.95}$O/PANI$_3$ nanocomposite (a) and the corresponding plot of (αhν)2 vs. hν (b).
Fig. 4a illustrates the UV-Vis diffuse reflectance full spectra of bare ZnO, Ni₀.₀₁Zn₀.₉₉O and Ni₀.₀₁Zn₀.₉₉O/PANI photocatalysts. It is obvious that the bare ZnO absorbs light with wavelengths only below 390 nm. The spectrum of ZnO consists of a single absorption usually ascribed to charge-transfer from the valence band (formed by 2p orbitals of the oxide anions) to the conduction band (formed by 3d orbitals of the Zn⁺⁺ cations). It is clear from Fig. 4a that the absorbance of Ni-doped ZnO nanoparticles in the visible region is higher than that of pure ZnO nanoparticles. It is assumed that the enhanced optical activity is owed to the increase in the surface imperfections due to Ni doping in ZnO nanoparticles, which is expected to be driven by the interaction of the Ni 3d and O 2p states in both the valence and conduction bands [47]. It means that defect sites are generated in the vicinity of valence band due to doping of ZnO with Ni ions. As a result, electron-hole pair is generated within the effective band gap after photoexcitation of particles, and electron transition takes place from the defect valence state to the defect conduction state. This transition requires much lower energy than the band gap of ZnO.

After being sensitized by PANI, the Ni₀.₀₁Zn₀.₉₉O/PANI₃ composite photocatalyst cannot absorb only the UV light, but can also considerably absorb visible light. We observed a noticeable shift of the optical absorption edge for the Ni-ZnO/PANI system towards the visible region. Surely, this shift towards the longer wavelengths originates from the band gap narrowing of Ni-ZnO by PANI hybridization. The band gap as calculated for pure ZnO, Ni₀.₀₁Zn₀.₉₉O and Ni₀.₀₁Zn₀.₉₉O/PANI₃ is 3.12, 3.07 and 2.98 eV, respectively.

The band gap energy of the photocatalysts samples was determined using the Tauc equation [48]:

\[\alpha h\nu = A (h\nu - E_g)^n\]

Where \(\alpha\) is the absorption coefficient, \(A\) is a constant and \(n = \frac{1}{2}\) for direct band gap semiconductor. An extrapolation of the plot of \((\alpha h\nu)^2\) vs. \(h\nu\) (Fig. 4b) gives the value of the band gap [49, 50].

The above results indicate that PANI is able to sensitize ZnO efficiently. The resulting composite photocatalysts can be excited by absorbing both UV and visible light to produce more electron-hole pairs and give a maximum visible-light harvesting. This, in turn, can result in higher photocatalytic activities, and therefore, it can be a promising photocatalytic material for the efficient use of light, especially sunlight in the photoproduction of hydrogen.

3.1.3 Thermal analysis

The thermal behavior of the hybrid photocatalysts was investigated by thermogravimetry (TG) in comparison to prepared Ni₀.₀₁Zn₀.₉₉O and PANI samples. The results are illustrated in Fig. 5. As it is clearly seen, the prepared Ni₀.₀₁Zn₀.₉₉O proves a good thermal stability till 500 °C; only 1.36 % of weight loss, which is probably attributed to absorbed moisture, is shown. The TG curve of prepared pure PANI shows first weight loss of 7.3 % due to absorbed moisture and solvent upon initial heating up to 200 °C. A second weight loss occurs from 220 to 500 °C and corresponds to the degradation phase of the polymer. The final degradation of PANI should be occurred around 600-750 °C [51]. On the other hand, the weight loss shown in the thermograms of Ni-ZnO/PANI nanocomposites may be due to the decomposition of the organic moiety. Obviously, this weight loss mainly occurring from 200 to 500 °C increases with the proportion of PANI in the hybrid material. Moreover, the weight losses are smaller than the nominal amounts of PANI in the nanocomposites (Table 1). Two reasons may explain this result: i) the given weight losses are those calculated at 500 °C, before the total degradation of PANI and ii) it is not certain that all the initial amount of PANI was effectively used to impregnate the inorganic moiety of the hybrid nanocomposite.

Table 1. wt.% of PANI from TGA curves in comparison to nominal values in the Ni-ZnO/PANI hybrids.
3.2. Photocatalytic hydrogen production in the presence of Ni$_{x}$Zn$_{1-x}$O/PANI,

3.2.1 Effect of Ni$^{2+}$ content

The effect of Ni$^{2+}$ content on the photocatalytic activity of the Ni-ZnO/PANI material under visible light is examined while keeping constant the amount of PANI in the hybrid composition. Fig. 6 presents the time course of the photocatalytic hydrogen generation by Ni$_{x}$Zn$_{1-x}$O/PANI$_{3}$ photocatalyst with different Ni$^{2+}$ content. It is clearly shown that doping ZnO with Ni$^{2+}$ cations significantly increase its activity for the hydrogen photoproduction under visible illumination. For one hour of visible irradiation, the hydrogen production of Ni$_{x}$Zn$_{1-x}$O/PANI$_{3}$ photocatalysts reached the points of 8.5 mL (~379 μmole), 9.1 mL (~406 μmole) and 9.8 mL (~437 μmole) for x = 0.01, 0.05 and 0.1, respectively. These productions are much higher than of pure ZnO on the same reaction condition, which is only 4 mL (~178 μmole). The large difference between the efficiency of Ni-doped and undoped ZnO can be explained by two main factors: The ability to absorb visible light and to separate the photogenerated charges.

As shown above by DRS results, Ni doped ZnO absorbs more visible light and so act as a better photocatalyst under visible light irradiation. Besides enhancing the ability to absorb visible light, Ni doping is expected to enhance the separation of electron and hole and avoid their fast recombination owing to the p-n junction concept. It means that the contact between NiO, as a p-type semiconductor, with ZnO, as a n-type counterpart, is expected to induce an internal electric field that can extend the probability of electron-hole separation [52].

3.2.2 Effect of PANI amount

The effect of the PANI amount on the hydrogen production is investigated using Ni$_{0.1}$Zn$_{0.9}$O/PANI$_{y}$ photocatalysts. Fig. 7 describes the obtained results when y values are respectively 3, 6 and 10 wt.%. It is found that the hybridization of Ni-ZnO with PANI improves its photocatalytic activity under visible light irradiation. As a result, the volume of hydrogen photoproduced increased in the presence of Ni$_{0.1}$Zn$_{0.9}$O/PANI$_{y}$ photocatalysts compared to the non hybridized Ni$_{0.1}$Zn$_{0.9}$O. This enhancement is found to be more pronounced when the amount of PANI in the Ni$_{0.1}$Zn$_{0.9}$O/PANI$_{y}$ composite increase. Thus, for one hour of visible irradiation, the volume of photoproduced hydrogen reaches 9.8 mL (~437 μmole) with Ni$_{0.1}$Zn$_{0.9}$O/PANI$_{10}$, 10.9 mL (~486 μmole) with Ni$_{0.1}$Zn$_{0.9}$O/PANI$_{6}$, 12.5 mL (~558 μmole) with Ni$_{0.1}$Zn$_{0.9}$O/PANI$_{5}$ and only 6.6 mL (~294 μmole) with Ni$_{0.1}$Zn$_{0.9}$O. The amounts of hydrogen production measured in this work in the presence of Ni-ZnO/PANI hybrid photocatalysts are significantly higher than those found when using some other photocatalysts [53-55]. Two reasons may explain why the photocatalytic activity of Ni-ZnO/PANI hybrids is higher than that of pure ZnO or Ni-doped ZnO: (i) Chemical interactions are expected to occur between ZnO nanoparticles and PANI conducting polymer. Consequently, electrons transfer from PANI to ZnO, leading to an increase of electrons density in ZnO. As a result, the amount of photoexcited electrons is increased and the photocatalytic activity of the composites for hydrogen production is improved. (ii) The disordered structure of PANI may be improved and have some ordering after addition of ZnO nanoparticles, which may lead to transferring of electrons from PANI to ZnO becoming easier. Subsequently, electrons are easily photoexcited in ZnO and the photocatalytic activity of Ni-ZnO/PANI composites for hydrogen evolution is improved.

<table>
<thead>
<tr>
<th>Nominal wt.% of PANI</th>
<th>wt.% of PANI from TGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.13</td>
</tr>
<tr>
<td>6</td>
<td>4.85</td>
</tr>
<tr>
<td>10</td>
<td>7.95</td>
</tr>
</tbody>
</table>
The photocatalytic hydrogen generation in the presence of propanol may take place stepwise involving intermediates such as aldehydes and acids, which may compete between them and propanol with the valence band holes (h\(^{+}\)) [56]. This may partially explain the decrease of the amount of hydrogen photoproduced in the presence of propanol compared to S\(^{2-}\) and S\(_{2}O_{3}^{2-}\). Under our experimental conditions (pH = 7-8), sulfide ions (S\(^{2-}\)) are less abundant in the electron donor solution than bisulfide ions HS\(^{-}\) (pK\(_{a1}\) (HS/S\(^{2-}\)) = 13). HS\(^{-}\) can trap easily the valence band holes during a single stepwise reaction [57]:

\[
\mathrm{HS}^{-} + \mathrm{h}^{+} \rightarrow \mathrm{HS}^{(1)}
\]

The small amount of S\(^{2-}\) present in the solution may diffuse slower than HS\(^{-}\) to the photocatalyst surface and react with holes as follows:

\[
\mathrm{S}^{2-} + \mathrm{h}^{+} \rightarrow \mathrm{S}^{(2)}
\]

Thiosulfate anions (S\(_{2}O_{3}^{2-}\)) are the most efficient electron donors experimented here; they potentially increase the reaction rate of the photocatalytic hydrogen generation. The photogenerated semiconductor holes (h\(^{+}\)) are scavenged by the added S\(_{2}O_{3}^{2-}\) anions. S\(_{2}O_{3}^{2-}\) anions are oxidized by direct electron transfer to the photogenerated holes during a single stepwise reaction:

\[
2 \mathrm{S}_{2}O_{3}^{2-} + 2 \mathrm{h}^{+} \rightarrow \mathrm{S}_{2}O_{6}^{2-}(3)
\]

This should lead to a decrease of the electron/hole recombination and, consequently, the photoinjected electrons in the semiconductor conduction band are increased and rapidly delivered to the pre-adsorbed H\(^{+}\) to produce H\(_{2}^{\bullet}\):

\[
2\mathrm{H}^{+} + 2 \mathrm{e}^{\mathrm{cb}} \rightarrow \mathrm{H}_{2}(4)
\]

Because the standard redox potentials of HS\(^{-}\)/HSand S\(_{2}O_{3}^{2-}/S_{2}O_{6}^{2-}\) couples are 1.08 and 0.08 V, respectively, thiosulfate oxidation would take place more efficiently than that of sulfide/bisulfide. Thus, photocatalytic hydrogen evolution is more effective in the presence of thiosulfate anions as sacrificial electron donors.

The reactions were conducted with electron donor concentrations of 0.2 mol.L\(^{-1}\). It should be noticed that in all experiments, any noticeable hydrogen volume is measured in the absence of electron donor, which reject the possibility of distilled water-splitting. Besides, it is shown that the hydrogen evolution over Ni\(_{10}\)Zn\(_{0.9}\)O/PANI\(_{10}\) photocatalyst is quite stable in the presence of the tested sacrificial electron donors. This finding shows that these electron donors react irreversibly with the photoinduced holes. Moreover, it is observed that the hydrogen photoproduction efficiency depends strongly on the nature of the sacrificial electron donor and increases in the order: thiosulfate > sulfide > propanol. For one hour of visible irradiation, the volumes of photoproduced hydrogen are: 12.5 mL \~ 558 \mu\text{mole} (thiosulfate), 9.3 mL \~ 415 \mu\text{mole} (sulfide), and 7.7 mL \~ 343 \mu\text{mole} (propanol).

3.2.3 Effect of the nature of the sacrificial electron donor

Fig.8 shows the photocatalytic hydrogen evolution activities over a Ni\(_{10}\)Zn\(_{0.9}\)O/PANI\(_{10}\) photocatalyst from various sacrificial electron donor solutions. Here, sulfide (S\(^{2-}\)), thiosulfate (S\(_{2}O_{3}^{2-}\)) and propanol (C\(_{3}\)H\(_{7}\)OH) are used as electron donor, respectively. The reactions were conducted with electron donor concentrations of 0.2 mol.L\(^{-1}\). It should be noticed that in all experiments, any noticeable hydrogen volume is measured in the absence of electron donor, which reject the possibility of distilled water-splitting. Besides, it is shown that the hydrogen evolution over Ni\(_{10}\)Zn\(_{0.9}\)O/PANI\(_{10}\) photocatalyst is quite stable in the presence of the tested sacrificial electron donors. This finding shows that these electron donors react irreversibly with the photoinduced holes. Moreover, it is observed that the hydrogen photoproduction efficiency depends strongly on the nature of the sacrificial electron donor and increases in the order: thiosulfate > sulfide > propanol. For one hour of visible irradiation, the volumes of photoproduced hydrogen are: 12.5 mL ~ 558 \mu\text{mole} (thiosulfate), 9.3 mL ~ 415 \mu\text{mole} (sulfide), and 7.7 mL ~ 343 \mu\text{mole} (propanol).

The small amount of S\(^{2-}\) present in the solution may diffuse slower than HS\(^{-}\) to the photocatalyst surface and react with holes as follows:

\[
\mathrm{S}^{2-} + \mathrm{h}^{+} \rightarrow \mathrm{S}^{(2)}
\]

This should lead to a decrease of the electron/hole recombination and, consequently, the photoinjected electrons in the semiconductor conduction band are increased and rapidly delivered to the pre-adsorbed H\(^{+}\) to produce H\(_{2}^{\bullet}\):

\[
2\mathrm{H}^{+} + 2 \mathrm{e}^{\mathrm{cb}} \rightarrow \mathrm{H}_{2}(4)
\]

Because the standard redox potentials of HS\(^{-}\)/HSand S\(_{2}O_{3}^{2-}/S_{2}O_{6}^{2-}\) couples are 1.08 and 0.08 V, respectively, thiosulfate oxidation would take place more efficiently than that of sulfide/bisulfide. Thus, photocatalytic hydrogen evolution is more effective in the presence of thiosulfate anions as sacrificial electron donors.
The above results suggest that the rate of \(\text{H}_2 \) production is mainly governed by the reduction potential of the sacrificial electron donor and by the kinetic of the electron transfer process. The adsorption behavior of the electron donors is may be another important factor that can explain the difference in hydrogen evolution between the three donors. However, their exact adsorption nature is remained uncertain, so an investigation of the surface reactions is ongoing.

3.2.4 Effect of photocatalyst loading

![Graph showing effect of photocatalyst loading](image)

Fig.9. The effect of \(\text{Ni}_{0.1}\text{Zn}_{0.9}/\text{PANI}_{3} \) content on the amount of evolved \(\text{H}_2 \) (\(V_{\text{solution}} = 100 \text{ mL} \)), electron donor: \(\text{Na}_2\text{S}_2\text{O}_3 \).

One of the operational parameters which can affect the photocatalytic hydrogen generation is the catalyst loading. This is illustrated in Fig.9 for \(\text{Ni}_{0.1}\text{Zn}_{0.9}/\text{PANI}_{3} \) photocatalyst amount of 0.5, 1 and 2 g.L\(^{-1}\), respectively. \(\text{Sr}_2\text{O}_2^2- \) was used as the electron donor. It is shown that the amount of \(\text{H}_2 \) photogenerated increases with increasing the catalyst loading. For one hour of irradiation, the \(\text{H}_2 \) volume reaches about 8, 10 and 15 mL in the presence of 0.5, 1 and 2 g.L\(^{-1}\) of catalyst concentration, respectively. The above results show that the suspended \(\text{Ni}_{0.1}\text{Zn}_{0.9}/\text{PANI}_{3} \) did not reduce the penetration of the light in the solution and no severe light scattering was occurred for larger catalyst loading (2 g.L\(^{-1}\)). It means that the number of available photons inside the photoreactor increased with the amount of the catalyst.

3.2.5 Photocatalytic mechanism of \(\text{H}_2 \) generation

The increase in the photocatalytic activity of Ni-ZnO/PANI compared to bare ZnO should be essentially attributed to the efficient separation of electron and hole pairs. Both \(\text{Ni}^{2+} \) ions and PANI have significant contribution and great influence on the photocatalytic activity of Ni-ZnO/PANI composite for the hydrogen production. It can be hypothesized that \(\text{Ni}^{2+} \) doping into the ZnO lattice introduces an additional electron energy level into the valence band, which may reduce the energy band gap \([58, 59]\). When Ni-ZnO/PANI composite is illuminated under visible light, both Ni-ZnO and PANI absorb the photons at their interface. Since the lowest unoccupied molecular orbital (LUMO) level is more negative than that of the CB of ZnO, then, the electrons photogenerated from PANI can be transferred into the CB of ZnO where protons can be reduced to hydrogen. On the other hand, the photogenerated holes are consumed by reacting with the added carbonate species to form carbonate radicals (\(\text{HCO}_3^- \)) and may be \(\text{CO}_2 \), which can promote the desorption of \(\text{O}_2 \) from the photocatalyst surface and minimize the formation of \(\text{H}_2\text{O} \) through the backward reaction of \(\text{H}_2 \) and \(\text{O}_2 \)[21]. All these possibilities are shown in the schematic diagram of the schema.

![Schematic diagram of possible mechanisms of hydrogen photoproduction](image)

Schema.1. Schematic diagram of possible mechanisms of hydrogen photoproduction in the presence of Ni-ZnO/PANI photocatalyst.

4 Conclusion

Ni-ZnO/PANI hybrid photocatalysts were prepared by a simple impregnation method. As the organic partner, PANI can extend the photoresponse of ZnO to the visible region and narrow its band gap energy. The \(\text{Ni}^{2+} \) ions were found to substitute \(\text{Zn}^{2+} \) into the ZnO lattice and its content was shown to control the ZnO morphology. Through this research, we found that \(\text{Ni}^{2+} \) ions and PANI both have great influence on the photocatalytic activity of Ni-ZnO/PANI composite. The \(\text{Ni}_{0.1}\text{Zn}_{0.9}/\text{PANI}_{10} \) displayed the highest photoactivity for hydrogen production under visible-light irradiation. Moreover, the nature of the added sacrificial electron donor was found to increase the photoproduction efficiency of
hydrogen in the order: thiosulfate >sulfide> propanol.

References

[22] H Park, Y Park, W Kim, W Choi. Surface modification of TiO2 photocatalyst for

Synthesis and characterization of the hybrid Ni-TiO$_2$/PANI for an efficient hydrogen photoproduction under visible light irradiation.

[57] Y Li, F He, S Peng, G Lu, S Li. Photocatalytic H$_2$ evolution from NaCl saltwater over ZnSi$_{1-x}$O$_x$(OH)$_{y}$–ZnO under visible light irradiation. Int J Hydrogen Energy, 36(17), 2011, 10565-73.
