NUMERICAL STUDY OF DEVELOPING LAMINAR FORCED CONVECTION OF A NANOFLUID HEAT TRANSFER IN AN ANNULAR HORIZONTAL PIPE

M BENKHEDDA, T BOUFENDI

Résumé


This study reports numerical simulation for 3D laminar forced convection of a nanofluid flow in horizontal annulus with constant heat flux at the outer cylinder will the inner cylinder is considered adiabatic. The numerical model is carried out by solving the governing equation of continuity, momentum and energy using take account for thee finite volume method, with the assistance of SIMPLER algorithm. The results shows that for the Reynolds numbers and Prandtl fixed, the dimensionless velocity profile for the laminar forced convection of a nanofluid consisting of water does not vary with the volume concentration of nanoparticles while the effect of the concentration of nanoparticles on the temperature of the mass is significant nanofluid. These results are consistent with those found in the literature. In general the use of nanofluid with a volume concentration of nanoparticles causes a increase in the coefficient of heat transfer by convection.


Mots-clés


nanofluid; annulus; forced convection; numerical simulation; single-phase

Texte intégral :

PDF

Références


J.C. Maxwell, Electricity and Magnetism, Clarendon Press, Oxford, (1873).

S.U.S. Choi, Enhancing ‘’Thermal Conductivity of Fluids with Nanoparticles, in Developments and Applications of Non-Newtonian Flows’’. ASME FED 231/MD vol. 66, pp. 99–103, (1995.)

Eastman JA, Choi SUS, Li S, Thompson LJ, Lee S ‘’Enhancement thermal conductivity through the development of nanofluids’’ Procsymposium on nanophase and nanocomposite materials II, vol 457, Material research society, Boston, pp 3–11,(1997)

Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA ‘’Anomalously thermal conductivity enhancement in nanotube suspensions’’. Appl Phys Lett 79:2252–2254,(2001)

Maxwell JC ‘’Treatise on electricity and magnetism’’. London, Cambridge, pp 435–441,(1904)

Li Q, Xuan Y ‘’Experimental investigation of transport properties of nanofluids’’ In: Buxuan, Wang (ed) Heat transfer sci & technology, Higher Education Press, Beijing, pp 757–762,(2000)

Xuan Y, Li Q ‘’Investigation on convective heat transfer and flow features of nanofluids’’. J Heat Mass Transf 125:151–155,(2003)

Roy G, Nguyen CT, Lajoie PR ‘’Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids’’. Super lattices Microstruct 35:497–511,(2004)

Xuan, Y.M., Li, Q., Heat transfer enhancement of nanofluids. Int. J.Heat Fluid Flow 21, 58–64. (2000)

Yang, Y., Zhang, Z.G., Grulke, E.A., Anderson, W.B., Wu, G.,. Heat transfer properties of nanoparticle-in-fluid ispersions (nanofluids) in laminar flow. Int. J. Heat Mass Transf. 48 (6), 1106–1116. (2005)

Maiga, S.E., Nguyen, C.T., Galanis, N., Roy, G.,. Heat transfer behaviours of nanofluids in a uniformly heated tube. Super Lattices Microstruct. 35 (3-6), 543–557. (2004)

Khanafer, K., Vafai, K., Lightstone, M.,. Buoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653. (2003)

Koo, J., Kleinstreuer, C., 2005. Laminar nanofluid flow in microheatsinks. Int. J. Heat Mass Transfer 48, 2652–2661

Akbarinia, A., Behzadmehr, A., 2007. Numerical study of laminar mixed convection of a nanofluid in a horizontal curved tube. J. Appl. Therm. Eng. 27, 1327–1337.

Behzadmehr, A., Galanis, N., Laneville, A.,. Low Reynolds number mixed convection in vertical tubes with uniform heat flux. Int. J. Heat Mass Transf. 46, 4823–4833,(2003)

R. M. Moghari, F. Talebi, R. Rafee, M. Shariat, ‘’Numerical stydy of pressure Drop and Thermal Charateristics of Al2O3-Water Nanofluid Flow in Horizontal Annuli’’, Heat Transfer Engineering, 36 (2) (2015)166-177

S.M. Izadi, A. Behzadmehr, D. Jalali-Vahida, Numerical study of developing laminar forced convection of a nanofluid in an annulus, Int. J. Therm. Sci. 48, 2119–2129. (2009)

B. Pak, Y.I. Cho. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle. Heat Transfer, 11 (1998) 151–70

Hamilton, R.L., Crosser, O.K. ‘’Thermal conductivity of heterogeneous two-component system’’. I & EC Fundamental 1 (3), 187–191. (1962)

H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20: (1952) 571-581.

Patankar SV . ‘’Numerical heat transfer and fluid flow’’. Hemisphere Publishing Corporation, New York,(1980)

I. Nazrul, U.N. Gaitonde, G.K. Sharma, ‘’Mixed convection heat transfer in the entrance region of horizontal annuli’’, Int. J. Heat Mass Transfer, 44 11 (2001) 2107-2120.

T. Boufendi, M. Afrid, ‘’ Three-dimensional conjugate conduction-mixed convection with variable fluid properties in a heated horizontal pipe’’. Rev. Energ. Renouv, 8 (2005) 1-18.

S. Touahri, T. Boufendi, ‘’Numerical study of the conjugate heat transfer in a horizontal pipe heated by Joulean effect’’, Thermal Science, 16 1 (2012) 53-67.

S. Touahri, T. Boufendi, Conjugate heat transfer with variables fluid properties in a heated horizontal annulus, Heat Transf. Res. 10.1615/ Heat Trans Res.2015005019 pages 1019-1038 (2015).


Renvois

  • Il n'y a présentement aucun renvoi.




 

Direction des Publications et de l'animation scientifique

Université des Frères Mentouri Constantine 1. Route Ain El-Bey. 25000. Algérie.