The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc.  Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.


Natural convection in enclosure; inclined enclosure; Nusselt number.

Texte intégral :



S. Ostrach, «Natural convection in enclosures».

Heat Trans. 110 (1988) 1175–1190.

G. Huelsz, R. Rechtman, «Heat transfer due to natural convection in an inclined square cavity using the lattice Boltzmann equation method» , International Journal of Thermal Sciences 65 (2013) 111e119.M.C. Cullagh and J. Nelder, « Generalised Linear Models », London Chapman and Hall, 1983.

G. Vahl Davis, J.P. Jones, «Natural convectionin a square cavity: a comparison study», Int. J. Numer. Methods Fluids 3 (1983) 227–248.

M.M. Ganzarolli, L.F. Milanez, «Natural convection in rectangular enclosures heated from below and symmetrically cooled from the sides», Int. J. Heat Mass Trans. 38 (1995) 1063–1073.

O. Aydin, A. Unal, T. Ayhan, «A numerical study on buoyancy-driven flow in an inclined square enclosure heated and cooled on adjacent walls», Numer. HeatTrans. A 36 (1999) 585–589.

A. Bejan, «Natural convection from L-shaped corners with adiabatic and cold isothermal horizontal walls», J. Heat Trans. 116 (1994) 519–520.

Barakos et al, «Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions», International journal for numerical methods in fluids, vol. 18, 695-719 (1994).

N. C. Markatos and K. A. Pericleous, «Laminar and turbulent natural convection in an enclosed cavity», Inr. J. Heat Mass Transfer, 27, 775-772 (1984).

Yasin Varol a,*, Hakan. Oztop, Ahmet Koca, Filiz Ozgen, «Natural convection and fluid flow in inclined enclosure with a corner heater», Applied Thermal Engineering 29 (2009).

H.S. Chu, S.W. Churchill, C.V.S. Patterson, «The effect of heater size, location, aspect ratio, and boundary conditions on two-dimensional, laminar, natural convection in rectangular channels», J. Heat Trans. 98 (1976) 194–201.

P. Chao, H. Ozoe, S. Churcihill, N. Lior, «Laminar natural convection in an inclined rectangular box with the lower surface half-heated and half insulated», J. Heat Trans. 105 (1983) 425–432.

K. Ben Nasr, R. Chouikh, C. Kekreni, A. Guizani, «Numerical study of the natural convection in cavity heated from the lower corner and cooled from the ceiling», Appl. Thermal Eng. 26 (2006) 772–775.

Q.H. Deng, G.F. Tang, Y. Li, «A combined temperature scale for analyzing natural convection in rectangular enclosures with discrete wall heat sources», Int. J. Heat Mass Trans. 45 (2002) 3437–3446.

N. Nithyadevi, P. Kandaswamy, J. Lee, «Natural convection in a rectangular Cavity with partially active side walls” », Int. J. Heat Mass Trans. 50 (2007) 4688–4697.

H. Turkoglu, N. Yucel, «Effect of heater and cooler locations on natural convection in square cavities», N. Heat Trans. A 27 (1995) 351–358.

J.C. Patterson, S.W. Armfield, «Transient features natural convection in a cavity», J. Fluid Mech. 219 (1990) 469–497.


  • Il n'y a présentement aucun renvoi.


Direction des Publications et de l'animation scientifique

Université des Frères Mentouri Constantine 1. Route Ain El-Bey. 25000. Algérie.