One of the most important research fields of supercritical fluid technology is the solubility of solids in supercritical fluids. Solubility data is fundamental to the development of new supercritical applications as biodiesel production and refrigeration, and the enhancement of existing applications including environmental pollution, extraction and purification of pharmaceuticals, food and natural products, and natural gas industry. Hence, the ability to correlate and predict the solubility of solids in supercritical fluids is of utmost importance. In this work, we propose to correlate and predict the solubility in supercritical CO2 of disubstituted aromatic isomers of hydroxybenzoic acid with a new model based on the expanded liquid theory, in which the solid–fluid equilibrium is modeled using the local composition model of UNIQUAC in which the interaction parameters are related to the solvent reduced density with an empiric exponential form equations.  The experimental solubility data of o-hydroxybenzoic acid, p-hydroxybenzoic acid, m-hydroxybenzoic acid and mixed isomers (m-hydroxybenzoic acid+p-hydroxybenzoic acid) are used for evaluating the correlation and prediction capabilities of this new model. The results obtained using the proposed model show good agreement with the experimental data used.


supercritical fluid ; aromatic isomers ; correlation ; prediction ; solubility

Texte intégral :

PDF (English)


Madras G, Kulkarni C, Modak J. “Modeling the solubilities of fatty acids in supercritical carbon dioxide”, Fluid Phase Equilibria, 209, pp. 207–213, 2003.

Val J. Krukonis and Ronald T. Kurnik, “Solubility of solid aromatic isomers in carbon dioxide”, Journal of Chemical Engineering Data, 30, pp. 247-249, 1985.

Frank P. Lucien and Neil R. Foster, “Solubilities of mixed hydroxylbenzoic acid isomers in supercritical carbon dioxide”, Journal of Chemical Engineering Data, 43, pp. 726-731, 1998.

Foster N.R., Gurdial G.S., Yun J.S.L., Liong K.K., Tilly K.D., Ting S.S.T., Singh H., Lee J.H. Ind. Eng. Chem. Res, 30, pp. 1955–1964, 1991.

Chrastil J. “Solubility of Solids and Liquids in Supercritical Gases”. Journal of physical chemistry, 86, 15, pp. 3016-3021, 1982.

L.Nasri, Z. Bensetiti and Salima Bensaad, “Correlation of the solubility of some organic aromatic pollutants in supercritical carbon dioxide based on the UNIQUAC equation”, Energy Procedia, 18, pp.1261 – 1270, 2012.

Lee J.W., Min J.M., Bae H.K, “Solubility measurement of disperse dyes in supercritical carbon dioxide”, Journal of Chemical Engineering Data, 44, pp.684–687, 1999.

Lee J.W., Park M.W., Bae H.K., “Measurement and correlation of dye solubility in supercritical carbon dioxide”, Fluid Phase Equilibria, 173, 277–284, 2000.

Prausnitz, J. M.; Lichtenthaler, R. N.; Gomes de Azevedo, E. Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed: Prentice Hall Inc.: Engelwood Cliffs, NJ; 1999.

Susana S. Pinto and Hermı´nio P. Diogo, “Energetics of Hydroxybenzoic Acids and of the Corresponding Carboxyphenoxyl Radicals”, J. Phys. Chem. A, 109, pp.9700-9708, 2005.

Guigard S.E. and Stiver W.H.. A Density-Dependant Solute Solubility Parameter for Correlating Solubilities in Supercritical Fluids. Ind. Eng. Chem. Res, 37, pp. 3786–3792,1998.

Vázquez da Silva, M, and Barbosa, D. “Prediction of the solubility of aromatic components of wine in carbon dioxide”, J. Supercritcal.Fluids, 2004; 31:9-25.

Jie Ke, Can Mao, Minghong Zhong, Buxing Han,and Haike Yan, “solubilities of salicylic acid in SC Co2 with ethanol cosolvent”, J.of Supercritical.Fluids,9, No 2, 1996.

Frank P. Lucien and Neil R. Foster, “Influence of Matrix Composition on the Solubility of Hydroxybenzoic acid isomers in Supercritical Carbon Dioxide”, Ind. Eng. Chem. Res, 35, pp. 4686-4699, 1996.

Bamberger, T.; Erickson, J. C.; Cooney, C. L.; Kumar, S. K, “Measurement and Model Prediction of Solubilities of pure fatty acids, pure triglycerides, and mixtures of triglycerides in supercritical carbon dioxide. J. Chem. Eng. Data, 33, 327, 1988.

Chang, H.; Morrell, D. G. “Solubilities of Methoxy-1-Tetralone and Methyl Nitrobenzoate Isomers and their mixtures in Supercritical carbon dioxide”, J. Chem. Eng. Data, 30, pp. 74-78, 1985.

S T. Chung and K.S. Shing, “Multiphase behavior of binary and ternary systems of heavy aromatic hydrocarbons with supercritical carbon dioxide”, Fluid Phase Equilibria, 81, pp. 321-341, 1992.


  • Il n'y a présentement aucun renvoi.


Direction des Publications et de l'animation scientifique

Université des Frères Mentouri Constantine 1. Route Ain El-Bey. 25000. Algérie.