• A Elaziouti University of the Science and the technology of Oran (USTO M.B)
  • N Laouedj University of the Science and the technology of Oran (USTO M.B), Oran
  • A Bekka University of the Science and the technology of Oran (USTO M.B), Oran
  • RN. Vannier Lille University, Lille

Mots-clés :

CuBi2O4/CeO2 heterojunction, Congo red, photocatalytic activity, synergy effect


CuBi2O4/CeO2 composite materials were synthesized by solid state method and were characterized by a number of techniques such as X-ray diffraction, scanning electron microscopy and UV–Vis diffuse reflectance spectroscopy. The photocatalytic activity of the materials was investigated under UVA light and assessed using Congo red (CR) dye as probe reaction. The CuBi2O4/CeO2 photocatalyst exhibited the high efficiency as a result of 83.05% of decomposition of CR for 100 min of irradiation time with 30 wt % of CuBi2O4 at room temperature and a pH 7. The photodegradation reactions were satisfactory correlated with the pseudo-first-order kinetic model. The mechanism of the enhanced photocatalytic efficiency was explained by the heterojunction charge separation model.

Bibliographies de l'auteur-e

A Elaziouti, University of the Science and the technology of Oran (USTO M.B)

LCMIA Laboratory of Inorganic Materials Chemistry and Application, Department of Physical Chemistry

N Laouedj, University of the Science and the technology of Oran (USTO M.B), Oran

LCMIA Laboratory of Inorganic Materials Chemistry and Application, Department of Physical Chemistry

A Bekka, University of the Science and the technology of Oran (USTO M.B), Oran

LCMIA Laboratory of Inorganic Materials Chemistry and Application, Department of Physical Chemistry

RN. Vannier, Lille University, Lille

Unit of Catalysis and Solid State Chemistry


M. Mogensen, N. M. Sammes, G. A. Tompsett, Physical, « chemical and electrochemical properties of pure and doped ceria », Solid State Ionic,129, 2000, pp. 63-64.

M. Yashima, S. Sasaki, Y. Yamaguchi, M. Kakihana, M. Yoshimura, T. Mori, « Internal distortion in ZrO2–CeO2 solid solutions: Neutron and high-resolution synchrotron x-ray diffraction study », Applied Physics. Letter, 72, 1998, pp.182.

K. Nikolaou, «Emissions reduction of high and low polluting new technology vehicles equipped with a CeO2 catalytic system » ,Science and Total Environment, 235, 1999, pp.71.

M. Ozawa, « Role of cerium-zirconium mixed oxides for car pollution » , Journal of Alloy and Compounds , 275/277, 1998, pp.886-890.

X. Feng, D. C. Sayle, Z.L.Wang, M. S. Paras, B. Santora, A. C. Sutorik, T. X. T. Sayle, Y. Yang, Y. Ding, X. Wang, Y. Her, « Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres », Science 312, 2006, pp. 1504-1508.

N. Imanaka, T. Masui, H. Hirai, G. Adachi, «Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials », Chemical Materials, 15 , 2003, pp.2289-2291

J. Zhou, D. R. Mullins, « Adsorption and reaction of formaldehyde on thin-film cerium oxide », Surface Science, 600, 2006, pp.1540-1546.

N. Kakuta,, N. Morishima, M. Kotobuki,T. Iwase, T. Mizushima, Y. Sato, S. Matsuura, « Oxygen Storage Capacity (OSC) of Aged Pt/CeO2/Al2O3 Catalysts, Roles of Pt and CeO2 supported on Al2O3 », Applied Surface science, 121/122 , 1997, pp.408-412.

M. Lira-Cantu, F. C. Krebs, « Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): Performance improvement during long-time irradiation» Solar Energy Material Solar Cells, 90, 2006, pp. 2076-2086.

M. Flytzani-Stephanopoulos, M. Sakbodin, Z . Wang, « Regenerative Adsorption and Removal of H2S from Hot Fuel Gas Streams by Rare Earth Oxides», Science 312, 2006, pp. 1508-1510.

A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, N. El-Masry, «Violet/blue emission from epitaxial cerium oxide films on silicon substrates», Applied Physical Letter, 70, 1997, pp. 1647.

. N. Ozer, « Optical properties and electrochromic characterization of sol-gel deposited ceria films», Solar Energy Material Solar Cells, 68, 2001, pp. 391-400.

J.Q. Geng, Z.Y. Jiang, Y.B. Wang, D. Yang, «Carbon- modified TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method», Scripta Materialia, 59, 2008, pp. 352–355.

I. Mora-Sero, J. Bisquert, T. Dittrich, A. Belaidi, A.S. Susha, A.L. Rogach, «Photosensitization of TiO2 layers with CdSe quantum dots: correlation between light absorption and photoinjection», Journal Physical Chemistry C, 111, 2007, pp. 14889–14892.

Z. Bian, J. Zhu, S. Wang, Y. Cao, X.Qian, H. Li, «Self assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase», Journal Physical Chemistry C, 112, 2008, pp.6258–6262.

C. Hu, Z. Zhang, H. Liu, P. Gao, Z.LinWang, «Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles. Nanotechnology, 17, 2006, pp.5983–5987

G.K. Pradhan, K.M. Parida, « Fabrication of iron-cerium mixed oxide: an efficient photocatalyst for dye degradation» , Internatinal Journal Engineering science Technology, 2, 2010, pp.53-65.

W. Wu, S. Li, S. Liao, F. Xiang, X. Wu, « Preparation of new sunscreen materials Ce1−xZnxO2−x via solid-state reaction at room temperature and study on their properties. Rares Metals, 29, 2010, pp.149.

Małecka, M.A., Ke˛pin´ski, L., Mis´ta, W.,

« Structure evolution of nanocrystalline CeO2

and CeLnOx mixed oxides (Ln = Pr, Tb, Lu) in

O2 and H2 atmosphere and their

catalytic activity in soot combustion», Applied

Catalysis B,74, 2007, pp. 290–298.

T. Cai, Y. Liao, Z. Peng, Y. Long, Z. Wei, Q. Deng, « Photocatalytic performance of TiO2 catalysts modified by H3PW12O40, ZrO2 and CeO2 », Journal Environmental Science, 21, 2009, pp. 997–1004.

G. Ranga Rao,H. Ranjan Sahu, « XRD and UV-Vis diffuse reflectance analysis of CeO2–ZrO2 solid solutions synthesized by combustion method », Proc. Indian Academic Science, 113, 2001, pp. 651–658.

X. Wu, S. Liu, D. Weng, F. Lin, « Textural–structural properties and soot oxidation activity of MnOx-CeO2 mixed oxides», Catalysis Communication, 12, 2011, pp. 345–348.

L. Lingzhi, Y. Bing, «CeO2–Bi2O3 nanocomposite: Two step synthesis, microstructure and photocatalytic activity», Journal of Non-Crystalline Solids, 355, 2009, pp. 776–779

I. Bhati, P. B. Punjabi, S. C. Ameta, «Photocatalytic degradation of fast green using nanosized CeCrO3», Macedonian Journal Chemistry and Chemical Engineering, 29, 2010, pp.195–202.

H. R. Pouretedal, S. Basati, « Synthesis , charactzrization and photocatalitic activity of CeO2/SBA-15 », Iranian Journal of Catalysis, 2, 2012, pp. 50-54.

R. M. Mohamed, E. S. Aazam, «Synthesis and Characterization of CeO2-SiO2 Nanoparticles byMicrowave-Assisted IrradiationMethod for Photocatalytic Oxidation of Methylene Blue Dye», International Journal of Photoenergy, 2012, pp. 1-9.

S. Song, L. Xu, Z. He, H. Ying, J. Chen, X. Xiao, B. Yan, « Photocatalytic degradation of C.I. Direct Red 23 in aqueous solutions under UV irradiation using SrTiO3/CeO2 composite as the catalyst », Journal of Hazardous Materials, 152, 2008, pp.1301–1308.

H. Wang, L. Yang, H. Yu, F. Peng, « A Highly Efficient and Stable Visible-Light Plasmonic Photocatalyst Ag-AgCl/CeO2», World Journal Nano Science Engineering, 1, 2011, pp. 129-136.

N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, « BiVO4/CeO2 Nanocomposites with High Visible-Light-Induced Photocatalytic Activity», Applied Material Interfaces, 4, 2012, pp. 3718−3723.

R. Rangel, G.J. López Mercado, P. Bartolo-Pérez, R. García, « Nanostructured-[CeO2, La2O3, C]/TiO2 Catalysts for Lignin Photodegradation », Science of Advance Materials, 4, 2012, pp. 573–578.

N. Sabari Arul, D. Mangalaraj, P. C. Chen, N. Ponpandian, P. Meena, Y. Masuda, «Enhanced photocatalytic activity of cobalt-doped CeO2 nanorods », Journal Sol-Gel Science Technology, 64,2012, pp. 515–523.

A. Zhang, « Hydrothermal processing for obtaining of BiVO4 nanoparticles », Journal of Material Letter, 63, 2009, pp.1939−1942.

J. S. Valente, F. Tzomoantzi, J. Prince, « Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO2/MgAl layered double hydroxides » , Journal of Applied Catalysis B, 102, 2011, pp. 276−285.

L. Li, B. J. Yan, « CeO2-Bi2O3 nanocomposite: Two step synthesis, microstructure and photocatalytic activity», Journal Non-Crystalline Solids, 355, 2009, pp 776−779.

N. Couselo, F.S.Garcia Einschlag, R.J. Candal, M. Jobbagy, «Tungsten-doped TiO2 vs pure TiO2 photocatalysts: effects on photobleaching kinetics and mechanism», Journal Physical Chemistry C, 112, 2008, pp.1094–1100.

A. Sasahara, C.L. Pang, H. Onishi, « Local work function of Pt clusters vacuum-deposited on a TiO2 surface », Journal Physical Chemistry B, 110, 2006, pp. 17584–17588.

A.Takeo, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, « High-throughput screening using porous photoelectrode for the development of visible-lightresponsive semiconductors », Journal Comb. Chemistry, 9 , 2007, pp. 574–581.

R. C. Pullar, M.D.Taylor, A.K. Bhattacharya, Journal of the European Ceramic Society, 18, 1988, pp.1759-1764.

K. Vasanth Kumar, K. Porkodi, F. Rocha, « Langmuir–Hinshelwood kinetics – a theoretical study, Catal. Commun. 9, 2008, pp. 82–84.

J. Keren, « Fabrication and Catalytic Property of Cerium Oxide Nanomaterials », Thesis University of Nebraska – Lincoln, 2011.

C. Hu, Z. Zhang, H. Liu, P. Gao, z. LinWang, Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles», Nanotechnology, 17, 2006, pp. 5983–5987

K.S. Lin S. «Chowdhury, « Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review», International Journal of Molecular Science, 11,2010, 3226-3251.

N. T. Hahn, V.C. Holmberg, B.A. Korgel,., C. B. Mullins, « Electrochemical Synthesis and Characterization of p-CuBi2O4 Thin Film Photocathodes», Journal Phycal Chemistry C, 116, 2012 , pp. 6459−6466.

X. Lu, X. Li, F. Chen, C. Ni, Z. Chen «, Hydrothermal synthesis of prism-like mesocrystal CeO2», Journal Alloys Compound, 476, 2012, pp. 958–962.

Y. Xu, M.A.A. Schoonen, «The absolute energy positions of conduction and bands of selected semiconducting minerals», American Mineralogist, 85, 2000, pp. 543-556.

G. Magesh, b. Viswanathan, r. Viswanathan,

P.,TVaradarajan, K., « Photocatalytic

behavior of CeO2-TiO2 system for degradation

of methylene blue», Indian Journal chemistry

A, 2009, pp.480-488

K. Marunsek, « Electrical conductivity of sintered LMS ceramics», Material Technology, 43,2009, pp. 79–84.

W. Liu. S. Chen, H. Zhang, X. Yu, « Preparation, characterisation of p-n heterojunction photocatalyst CuBi2O4/Bi2WO6 and its photocatalytic activities», Journal Experimental Nano Science, 6, 2011, pp. 102–120

K. S. Lin, S. Chowdhury, « Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review», Internaternational Journal of Molecular Science, 11, 2010, pp. 3226-3251.

Y. I. Kim, S.J. Atherton, E.S. Brigham, T.E. Mallouk, «Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors», Journal Physical Chemistry, 97, 1993, pp. 11802-11810.

M.A. Butler, D. S. Ginley, « Prediction of Flatband Potentials at Semiconductor‐Electrolyte Interfaces from Atomic Electronegativities», Journal Electrochemical Society, 125, 1998, pp. 228-232.

D. Li, H. Haneda, N. Ohashi, S. Hishita, Y. Yoshikawa, « Synthesis of nanosized nitrogen-containing MOx-ZnO (M = W, V, Fe)

composite powders by spray pyrolysis and

their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition», Catalysis Today, 93/95,2004, pp. 895-901

L. Mingce, C. Weimin, C. Jun, Z. Baoxue, C. Xinye, W. Yahui, « Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation», Journal Physic Chemistry B, 110, 2006, pp.20211-20216.




Comment citer

Elaziouti, A., Laouedj, N., Bekka, A., & Vannier, R. (2014). PREPARATION AND CHARACTERIZATION OF P-N HETEROJUNCTION CuBi2O4/CeO2 AND ITS PHOTOCATALYTIC ACTIVITIES UNDER UVA LIGHT IRRADIATION. Sciences & Technologie. A, Sciences Exactes, (39), 9-22. Consulté à l’adresse