A natural iron oxide (NIO) was applied for the photodegradation of 2,6-dimethylphenol in presence of polycarboxylic acids under UV irradiation. The dependence of 2,6-DMP degradation was attributable to the formation of dissolved
Fe–polycarboxylate in the solution and adsorbed on the surface of natural iron oxide. The results showed that the photodegradation of 2,6-DMP could be enhanced greatly in the presence of oxalate. The variables studied were the aqueous pH, the presence of hydrogen peroxide and temperature in NIO / oxalate / UV system. The optimal pH value was found to be in the range of 3–4. It was found that the formation of Fe (II) in NIO / oxalate system occurred more vigorously at the initial stage and gradually became moderate. Furthermore, the formation of H2O2 during the photoreaction was studied to explore its relationship with the photodegradation efficiency and the iron cycling process. The use of 2.0% of isopropanol as a scavenger confirmed the intervention of hydroxyl radicals in the degradation of 2,6-DMP.


Natural iron oxide (NIO); 2,6-DMP; Fe – polycarboxylate; H2O2; hydroxyl radicals

Texte intégral :



A. Babuponnusami, K. Muthukumar, Clean Soil, Air, Water 39 (2011) 142-147.

G.B. Ortiz de la Plata, O.M. Alfano, A.E. Cassano, Appl. Catal. B: Environ. 95 (2010)


Y. Valcárcel, F. Martínez, S. Gonzalez-Alonso, Y. Segura, M. Catalá, R. Molina, J.C. Montero-Rubio, N. Mastroianni, M. Lopez de Alda, C. Postigo,D. Barcelo, Environ. Int. 41 (2012)


A.M.T. Silva, N.R. Zilháo, R.A. Segundo, M. Azenha, F. Fidalgo, A.F. Silva, J.L. Faria,

J. Teixeira, J. Chem. Eng. 184 (2012) 213-220.

E.M.R. Rocha, V.J.P. Vilar, A. Fonseca, I. Saraiva, R.A.R. Boaventura, Solar Energy 85(2011) 46 - 56.

M.N. Chong, A.K. Sharma, S. Burn, C.P. Saint,

J. Clean. Prod. 35 (2012) 230 - 238.

E. Chatzisymeon, S. Foteinis, D. Mantzavinos, T. Tsoutsos, J. Clean. Prod. 54 (2013) 229 - 234.

F. Haber, J. Weiss, Proc. Royal Soc. Lond. Ser. A, (1934) 332 - 351.

J.J. Pignatello, E. Oliveros, A. MacKay, Crit. Rev. Environ. Sci. Technol. 36 (2006) 1- 84.

Q. Lan, F.B. Li, C.X. Sun, C.S. Liu, X.Z. Li,

J. Hazard. Materi. 174 (2010) 64–70.

R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses, Wiley-VCH, Weinheim, (2003).

S. Aredes, B. Klein, M. Pawlik, J. Clean. Prod. (2012) 29 - 30, 208 - 213.

H.-H. Huang, M.-C. Lu, J.-N. Chen, Water Res. 35 (2001) 2291- 2299.

X. Xue, K. Hanna, N. Deng, J. Hazard. Mater. 166 (2009) 407 - 414.

Q. Lan, F.B. Li, C.X. Sun, C.S. Liu, X.Z. Li, J. Hazard. Mater. 174 (2010) 64 -70.

D. Panias, M. Taxiarchou, I. Douni, I. Paspaliaris, A. Kontopoulos, Canadian Metallurgical Quarterly 35 (1996) 363–373.

D. Panias, M. Taxiarchou, I. Paspaliaris, A. Kontopoulos, Hydrometallurgy 42 (1996)


M.I. Litter, E.C. Baumgartner, G.A. Urrutla, M.A. Blesa, Environ. Sci. Technol. 25 (1991)


C. Siffert, B. Sulzberger, Langmuir 7 (1991) 1627–1634.

B. Sulzberger, H. Laubscher, Marine Chemistry 50 (1995) 103–115.

P. Mazellier, B. Sulzberger, Environ. Sci. Technol. 35 (2001) 3314–3320.

F.B. Li, X.Z. Li, X.M. Li, T.X. Liu, J. Dong, Journal of Colloid and Interface Science 311 (2007) 481–490.

C.S. Liu, F.B. Li, X.M. Li, G. Zhang, Y.Q. Kuang, Journal of Molecular Catalysis A Chemical 252 (2006) 40–48.

X.G. Wang, C.S. Liu, X.M. Li, F.B. Li, S.G. Zhou, J. of Hazard. Mater. 153 (2008) 426–433.

Q. Lan, F.B. Li, C.S. Liu, X.Z. Li, Environ. Sci.Technol.42 (2008) 7918–7923.

D.F. Goerlitz, D.E. Trouman, E.M. Godsy, B.J. Franks, Environ. Sci. Technol. 19 (1985) 955.

J.G. Calvert, J.M. Pitts, Photochemistry, Wiley, New York, 1992.

S. Belaidi, T. Sehili, L. Mammeri, K. Djebbar,

J. Photochem. Photobiol. A: Chemistry 237 (2012) 31– 37.

E. Rodriguez, G. Fernandez, B. Ledesma,

P. Alvarez, F. J. Beltran, Applied Catalysis

B: Environnemental 92 (2009) 240–249.

R. Chiarizia, E.P. Horwitz, Hydrometallurgy 27 (1991) 339–360.

V.R. Ambikadevi, M. Lalithambika, Appl. Clay Sci. 16 (2000) 133–145.

C.H. Huang, A.T. Stone, Environ. Sci. Technol. 34 (2000) 4117.

S.O. Lee, T. Tran, B.H. Jung, S.J. Kim, M.J. Kim, Hydrometallurgy 87 (2007) 91.

D. Panias, M. Taxiarchou, I. Douni,

I. Paspaliaris, A. Kontopoulos, Hydrometallurgy 43 (1996) 219–230.

M.E. Balmer, B. Sulzberger, Environmental Science & Technology 33 (1999) 2418–2424.

J. Lei, C. Liu, F. Li, X. Li, S. Zhou, T. Liu,

M. Gu, Q. Wu, J. of Hazard. Mater. B 137 (2006) 1016–1024.

F. Gulshan, S. Yanagida, Y. Kameshima, T. Isobe, A. Nakajima, K. Okada, Water Research 44 (2010) 2876–2884.

W.P. Kwan, Kinetics of the Fe(III) initiated decomposition of hydrogen peroxide: Experimental and model results. PhD Thesis, MIT, USA. (2003).

S-H. Kong, R.J. Watts, J-H. Choi, Chemosphere, 37 1998) 1473.

S. Chou, C. Huang, Appl. Catal. A: Environ., 185 (1999) 237.

Y. Lee, C. Lee, J. Yoon, Chemosphere 51 (2003) 963–971.


  • Il n'y a présentement aucun renvoi.