
Sciences & Technologie B – N°39, (Juin 2014), pp 19-27.

© Université des Frères Mentouri Constantine, Algérie, 2014.

19

MODELING INPUT DATA CLASSES OF THE BUILDING ENERGY
SIMULATION PROGRAM ENERGY PLUS WITH SCENARIOS

AND HIERARCHICAL COLORED PETRINETS

A. BACHKHAZNADJI, A. BELHAMRI

Département de Génie Climatique, Faculté des Sciences de la Technologie

Université des Frères Mentouri Constantine, Algérie

Reçu le 10 Février 2014 – Accepté le 20 Mai 2014

Résumé

Le principal apport dans ce travail, outre le cadre méthodologique lié au processus itératif proposé, réside dans la mise en œuvre

d’une nouvelle plateforme qui permet la création de prototype d’interface usager spécifique au fichier IDD d’entrée des données du

programme de simulation des performances énergétique des bâtiments EnergyPlus.

La notation UML et les réseaux de pétri de hauts niveaux sont utilisés pour la première fois dans le processus de développement

d’interface usager pour le programme EnergyPlus.

Cette méthodologie permet la génération des aspects statique et dynamique d’un prototype d’interface graphique à partir des

spécifications de comportement et des données.

Mots clés : EnergyPlus, IDD File Scenarios, UML, réseaux de Petri colorés.

Abstract

This paper addresses the problem of modeling input data classes of the input data dictionary (IDD) file of the Building energy

simulation program EnergyPlus. Our endeavor is to provide an easy way for elaborating a behavior specifications of an interactive user

interface intended for input data of the IDD file, using hierarchical colored Petri nets.

The modeling approach used in this work comprises two levels of abstraction: the use case level corresponding to the use case

diagram model as defined in the unified modeling language (UML) and the scenario level as refinement of the former one. The color

aspect of Petri-nets is used at the scenario level to preserve the independence of several scenarios after their integration.

The benefit of the approach consists in the structuring of the scenario acquisition and the approach of merging scenarios using

composite color sets.

Key words: EnergyPlus, IDD File, Scenarios, UML, Colored Petri-nets.

 ملخص

محددة لملف معلوماتية مستخدم بإنشاء المساهمة الرئيسية في هذا العمل ، بالإضافة إلى الإطار المنهجي المتصلة بعملية تكرارية

 EnergyPlus.نموذج واجهة جديدة تسمح هو تنفيذ منصة المقترح

استخدام UMLعملية تطوير في الأولى للمرة المستويات بيتري عالية وشباكات إدخال البيانات IDDمحاكاة أداء الطاقة لبرنامج

 EnergyPlus. يتم

 إنطلاقا من واجهة المستخدم هذه المنهجية تتيح لابراز الجوانب الثابتة والحيوية من نموذج للبرنامج م معلوماتية مستخدم واجهة

 .واصفاتالسلوكية والبيانات الم.

 شبكة الملونة بتري ٠يوم ل ٠سيناريوهات ٠ملف ادد ٠انرجي بليس : همفتاحيكلمات

A. BACHKHAZNADJI, A. BELHAMRI

 20

he need for formal techniques for analyzing systems is

widely recognized, a large range of existing

formalisms being in use for specifying systems. In

modeling interactive systems, visual formalisms are

required to reduce the gap between users and the analysts.

Object-Oriented (O-O) methods like UML [1] offer one of

these formalisms (statecharts). So far they only address the

dynamic behavior of individual objects. The behavior of

the overall system cannot be described explicitly; it must be

synthesized from the statecharts of the objects of the system

[2].

The main contribution of this paper is to provide an

approach for the formal specification of the dynamic

behavior of an overall new interactive system describing

input classes of the IDD (Input Data Dictionary) file of the

building EnergyPlus simulation program. We propose a

process for deriving system specifications combining the

UML as object-oriented method and colored Petri-Nets as

formal technique [3]. At the beginning of the process, a use

case diagram model is elaborated according to the UML 2.0

notation [4]. Then we transform this diagram onto Petri-

nets having use cases as transitions and user interactions as

guard conditions of transitions. Each transition of this net

(use case) is then refined by a colored Petri-net constructed

from scenario associated with various use cases. The choice

of colored Petri-nets as formalism was directed by the

support of concurrency and the notion of colored tokens

which are crucial in scenarios integration. The use of

colored Petri-nets [5] may allow for verification and

simulation of the resulting specification.

In our previous work [6], we have investigated a UML

(version 1.4) class diagramming model, which describe

merely the static structure of the IDD input data classes and

a model driven application had been implemented based on

that diagram.

In this article, we aim to model the input data classes,

mentioned in the IDD structure protocol manual [7], not

only using the UML class diagram model but by

introducing the UML use cases and scenario specifications.

Scenarios have been identified as an efficient means for

understanding user requirements [8] and for analyzing user

interfaces. A typical process for requirements engineering

based on scenarios, has two main tasks. The first task

consists of generating scenario specifications which

describe the dynamic behavior of the system. The second

task concerns scenarios validation with users by simulation

and prototyping.

Thus, we need Petri-nets objects that support hierarchies

as well as token colors to distinguish between scenarios.

In this paper, we introduce in the subsequent sections,

first: the formalism used to describe Petri-nets as a discrete-

event modeling language. Second: we provide an overview

of the UML 2.0, with special focus on the class diagram,

use case diagram and sequence diagram models. Third: we

present the approach which describes the process for

deriving the input data dictionary system specifications and

finally we conclude this paper.

1. COLORED PETRI-NETS

Colored Petri-nets (CPNs) is a language for the

modeling and validation of systems in which concurrency,

communication, and synchronization play a major role.

Colored Petri-nets is a discrete event modeling language

combining Petri-nets with the functional programming

language Standard ML [9]. Petri-nets provide also the

foundation of the graphical notation and the basic

primitives for modeling concurrency, communication, and

synchronization. Standard ML provides the primitives for

the definition of data types, describing data manipulation,

and for creating compact and parameterisable models. Data

types can be atomic (integer, string, real, Boolean,

enumeration), and structured (products, records, unions,

lists, subsets). A CP-net model of a system is an executable

model representing the states (places) of the system and the

events (transitions) that can cause system to change state.

A CP-net model is also a description of a modelled

system and it can be used as a specification or as a

presentation. The behavioral aspect of a CP-net can be

validated by means of a simulation and animation, and can

be verified by means of more formal analysis methods, i.e.

state spaces and place invariants [2]. The process of

creating the description and performing the analysis,

usually gives the modeler a dramatically improved

understanding of the modelled system.

A simple CP-net model is defined as a bipartite graph

consisting of places, transitions and tokens: CP-net model =

< P, T, A, M>, where P: the set of places, T: the set of

transitions, A: the set of directed arcs connecting places and

transitions, M: the set of tokens (Marking of CP-net model)

resident in places at a given moment. Each token has a data

value attached to it. This data value is called the token

color. It is a number of tokens and the token colors on the

individual places which together represent the state of the

system. In addition a CP-net may have an associated set of

enabling and firing rules to establish under what conditions

(particular marking) a transition is enabled.

Colored Petri-nets (CPNs) is defined as a group of:

 < Σ, D, P, T, A, τ, G, E, I > where:

Σ: is a finite set of non-empty types called color sets,

D: is finite set of data fields,

P: is a finite set of places with PD,

T: is a finite set of transitions with D T = ,

A: is a set of finite arcs such that A PxT TxP,

τ: is a color function,

τ: D → Σ, pP, τ(p) = C and CΣ,

G: is a guard function, G: T→expr,

E: is an arc expression function E:

DxT TxD → expr,

I: is an initialization function, I: D → expr, where

I (d) is a closed expression and

 d D: [type (I (p)) = τ(p)].

T

Modeling input data classes of the building energy simulation program EnergyPlus with scenarios …..

 21

In the above definition [9], arc expressions specify

tokens which are being added or removed by transitions.

Both places and variables of expressions are typed and the

initial marking is defined by the initialization function I.

2. UNIFIED MODELING LANGUAGE (UML)

The UML represents the unification of the best known

object-oriented methodologies to provide a standard in the

field of object oriented analysis and design. The UML does

not provide a process for developing software, but it gives a

syntactic notation to describe all parts of a system (data,

function and behavior) through a number of diagrams:

 Functional or interactive view, described with the

assistance of use case diagrams, sequence diagrams, and

collaboration diagrams.

 Structural or static view, represented with the assistance

of class diagrams, object diagrams, component diagrams,

and deployment diagrams.

 Dynamic view, expressed by statechart diagrams, and

activity diagrams.

In what follows, we first discuss UML diagrams that are

relevant for our approach: use case diagram, sequence

diagram, and class diagram.

2.1. Class diagram : IDDClassD

The IDDClassD represents the static structure of the

input data structure of the IDD file of the EnergyPlus

program. It identifies all the classes for the proposed

system and specifies for each class its attributes, operations

and relationships to other objects. Relationships include

inheritance, association and aggregation. The IDDClassD

is the central diagram of UML modeling. Figure 1 depicts

the IDDClassD of the proposed static model. To building

the objects (classes) model, we adopted the goal oriented

approach [10]. The principle of this approach is to identify

classes from use cases’ goals rather than use case

descriptions with the use case-driven process [11]. Classes,

in the IDDClassD, are the entities that participate in

achieving the goals allowing a user to interact with the

input classes described in the IDD file. They have their own

features and can collaborate with use cases.

The IDDClassD class diagram shows classes and

relationships among them. In the example of figure 1, the

kinds of relationships are associations. Four classes identify

the structure of the diagram: a group class (ObjectsGroup),

an input Object class (InputObject), a Numeric (NumField)

and alphanumeric (AlphaField) classes. The two remaining

ones, in the diagram, identify an actor/user (module

developer) and an interface (ICS) classes. The association

Associate shows the relationships between instances of the

two classes: ObjectsGroup and InputObject. A multiplicity

(1 to 1...*) is added to both ends of the association to point

at the role of each class to the other. In the class diagram,

an instance of the ObjectsGroup class may possess at least

one instance of the InputObject class.

Figure 1 : The proposed IDDClassD of the IDD file

The use case diagram is a contribution of Ivar Jacobson

in UML. A use case diagram describes the interactions

between external actors and the system being modelled. It

describes the sequence of actions carried out by a system

with an aim of offering a service to the actors. A use case

is a summary of scenarios for a simple task or goal. An

actor (user) is who or what initiates the events involved in

that task. Use cases are represented as ellipses, and actors

are depicted as icons connected with solid lines to the use

cases with which they interact. One use case can call upon

the services of another use case. Such a relation is called an

include relation, and its direction does not imply any order

of execution.

 Figure 2 shows the proposed use case diagram

IDDUseCaseD. There is an actor (i.e. module developer)

interacting with five basic use cases: Identify_object,

Generate_object, Edit_object, Delete_object, and

Save_object to IDD file. The use case Generate_object,

call upon the service of the use case Identify_object, and

include it as a subtask. An identification of an input object

class may be a group of related input objects, or an input

object, or a data field.

Figure 2 : The proposed IDDUseCaseD of the IDD file.

A. BACHKHAZNADJI, A. BELHAMRI

 22

Furthermore, the UML comprises the extend relation,

which can be considered as a variation of the include

relation, as well as generalization relation which indicates

that a use case is a special kind of another use case [1]. Use

case diagram is helpful in visualizing the context of our

application domain and the boundaries of the whole of the

interface behaviour. An execution of a use case will

typically be characterized by multiple scenarios (section

III.2).

2.2. Sequence diagram ; IDDsequenceD

A scenario is an instance of a use case. It describes a

group of interactions between actors and objects of the

systems. In UML, scenario can be represented in the form

of collaboration diagrams and/or sequence diagrams. Both

types of diagrams rely on the same underlying semantics,

and conversion of one to the other is possible [12].

For our work, we have chosen to use sequence diagram

for their simplicity. A sequence diagram shows the

interactions among the objects participating in a scenario in

temporal order. It depicts the objects by their lifelines and

shows the messages they exchange in time sequence.

However, it does not capture the associations between

objects. A sequence diagram has two dimensions: the

vertical dimension represents time, and the horizontal

dimension represents the objects. Messages are shown as

horizontal solid arrows from the life line of the object

sender to the life line of the object receiver.

 Figure 3 depicts two sequence diagrams (two

scenarios) of the use case Generate_object. Figure 3(a)

represents a scenario where the developer is correctly

entering a valid input object class name

(regularGeneration), whereas figure 3(b) shows the case

where an invalid input object class name is entered

(errorGeneration).

The two scenarios are based on the input/output

reference guide of EnergyPlus (EnergyPlus, v2.0 or latter).

Thus, defining an input data entry in the IDD file [7], the

following rules apply:

 A class name must be unique;

 The maximum length for an object name is 100

characters;

 Not an empty name.

3. DESCRIPTION OF THE MODELING APPROACH

In this section, we describe the process for obtaining the

formal specification of the dynamic behavior of the IDD

system to be modeled. We should emphasis that we address

the behavior of the entire system and not just the behavior

of its constituent objects.

For this purpose, we have used the two last kinds of

UML diagrams (IDDUseCaseD and IDDSequenceD

diagrams), described in previous section and combine them

with colored Petri-Nets.

The approach is three steps course of action:

Figure 3(a) : Scenario RegularGeneration of the use case

Generate_object.

Figure 3(b) : Scenario ErrorGeneration of the use case

Generate_object.

 The elaboration of the IDDUseCaseD of the IDD system,

and the generation of the corresponding colored Petri-

nets.

 The elaboration of several scenarios for each use case.

 The integration of scenarios by use case.

3.1. Generation of specification

This activity consists of deriving colored Petri-nets from

both the acquired use case diagram IDDUseCaseD (see

figure 2) and all sequence diagrams (see figure 3). These

derivations are explained below in the subsequent

subsections: use case specification and scenario

specification.

Modeling input data classes of the building energy simulation program EnergyPlus with scenarios …..

 23

3.1.1. Use case specifications

The Petri-net corresponding to the use case diagram is

derived by mapping use cases into places (see figure 4). A

transition (Enter) leading to one place corresponds to the

initiating action (event) of the use case. A place Init is

added to model the initial state of the IDD system. After a

use case execution, the IDD system will return, via an

(Exit) transition, back to its initial state for further

execution of the use case. The place Init may contain

several tokens to model concurrent executions. Figure 4

represents the Petri-net derived from the use case diagram.

Figure 4 : Petri-net (PN) of the use case diagram specification

In a use case diagram, a use case can call upon the

services of another use case with the relation include. The

relation may have several meaning depending on the

system being modelled. Consider two use cases: uc1 and

uc2 (figure 5): the relation include between them may be

interpreted in different ways [12]. Figure 5(a) gives the

general form of this relation, UC1 may be decomposed into

three sub use cases: UC11 represents the part of UC1

executed before the call of UC2; UC12 is the part executed

concurrently with UC2 and UC13 is the part executed after

termination of UC2 (synchronization).

It is possible that two of these three use cases are empty,

resulting in one of the configuration types shown in figure

5(b), figure 5(c), figure 5(d), figure 5(e), figure 5(f), and

figure 5(g). The relation of type (g) between UC1 and UC2

means that UC2 precedes UC1; this implies that UC1 is not

directly accessible from the initial place (place Init). So,

transition from the place Init to UC1 must be changed to

transition from UC2 to UC1. In the use case diagram

IDDUsedCaseD (see figure 2), the relation include between

the following couple of use cases is of type (g):

 (UC1:Generate_object);

 (UC2): Identify_object);

 (UC1: Edit; UC2: Generate_object);

 (UC1: Save ; UC2: Generate_object);

 (UC1: Delete; UC2: Generate_object).

The CPN Tools software which we adopted in our work,

allows for the refinement of transitions, but does not

support the refinement of places. Therefore, in order to

substitute use cases, which are represented as places, for the

colored PNs representing integrated scenarios (section

IV.1.3).

Figure 5 : The include relation and use cases.

The colored Petri-net obtained after processing the

include relation requires adaptation: each subnet (Enter →

placei → Exit) is substituted by a simple transition

representing the use case, cf. dashed square in figure 6, and

intermediate places, such as enIdentify and endGenerate are

inserted (see figure 7).

Figure 6 : PNs after processing the include relation.

The current marking of each place is indicated next to

the place. The number of tokens on the place in the current

marking is shown in the small circle, while the detailed

token colors are indicated in the box positioned next to the

small circle. Initially, the current marking is equal to the

initial marking, denoted M0. In the example of the figure 7,

the initial marking has four tokens on place Init and one

token on place Sc_g.

A. BACHKHAZNADJI, A. BELHAMRI

 24

Figure 7 : Colored Petri-net of the IDDUseCaseD

Arc expressions which are the textual inscriptions

positioned next to the individual arcs, and are built from

typed variables, constants, operators, and functions. When

all variables in an expression are bound to values (of the

correct type) the expression can be evaluated. The arc

expression evaluates to a multi-set of token colors (data

values). Consider the arc expression ae (see figure 7) on

the arc connected to both the transition GenerateObject and

the place Sc_g. It contains the variable ae declared as:

var ae: l;

where l is declared as a color set of type list,

colset l = list SC;

and SC is a color set of type enumeration,

colset SC = with rc|ec;

Next to each place, there is an inscription which

determines the set of token colors that places are allowed to

have. The set of possible token colors is specified by

means of a type and it is called the color set of the place.

By convention, the color set is written below the place. In

figure 7, places: Init, EndIdentify, and EndGenerate have

the color set UC and it is defined in CPN ML programming

language to be equal to the type enumeration:

Colset UC = with G|E|S|D;

This means that tokens residing on the three places will

have an enumeration type as their token color. The color set

UC is used to model the possible states of the colored Petri-

net. A place and a transition may also be connected by

double-headed arcs. A double-headed arc is shortened for

two directed arcs in opposite directions between a place and

a transition which both have the same arc expression. This

implies that the place is both an input place and an output

place for the transition. For instance, the transition

IdentifyObject and the place Init are connected by double-

headed arc (see figure 7).

3.1.2. Scenario specifications

For each scenario of the use case Generate_object, we

construct an associated table of object state. This table is

directly obtained from the sequence diagram of the scenario

by following the exchange of messages from top to bottom,

and identifying the changes in object state caused by the

messages. In our example, tables 1 and 2 show the object

states associated with the scenarios regularGeneration and

errorGeneration (see figure 3).

In such tables, a scenario state is represented by a state

vector of the objects participating in the scenario (column

scenario state in tables I and II respectively).

 From each object state table a colored Petri-net is

generated by mapping scenario states into places and

messages into transitions (see figures 8 and 9). Each

scenario is assigned a distinct color, e.g., rc for the

regularGeneration scenario, and ec for the errorGeneration

scenario.

All colored Petri-nets (scenarios) of the same use case

will have the same initial place (state) which we call B (see

figures 8 and 9). This place will serve to link the integrated

colored Petri-net (section IV.1.2) with the colored Petri-net

modeling the IDD use case diagram depicted by figure 7.

Table 1 : Object state table associated with the scenario

RegularGeneration

Object

messages
Developer ICS

Input

Object

Scenario

State

Provide

Class
Present

Select

Object

Void

S1

New

Object
Present

Select

Object

Object

Generated
S2

Enter

Object

Name

Present
Prompt

Name

Object

Generated
S3

Validate

Name
Present

Name

Entered

Validate

Name
S4

Valid

Name
Present

Name

Entered

Valid

Name
S5

Get

Comments
Present

Get

Comments

Valid

Name
S6

Confirm Present Confirm
Valid

Name
S7

.

With :

S1= (Present, provide class, void).

S2= (Present, provide class, object generated).

S3= (Present, prompt name, object generated).

S4= (Present, name entered, validate name).

S5= (Present, name entered, valid name).

S6= (Present, get comments, valid name).

S7= (Present, confirm, valid name).

Modeling input data classes of the building energy simulation program EnergyPlus with scenarios …..

 25

Table 2 : Object state table associated with the scenario

ErrorGeneration

With:

S1= (Present, provide class, void).

S2= (Present, provide class, object generated).

S3= (Present, prompt name, object generated).

S4= (Present, name entered, validate name).

S8= (Present, name entered, invalid name).

S9= (Present, error, invalid name).

S10= (Present, continue, invalid name).

In the above tables a scenario state is represented by the

union of the states of the objects participating in the

scenario. In figures 8 and 9, the place ‘B’ represents the

commencement of the use case. All scenarios related to the

same use case have the same initial place but different

token colors. This place will serve to link the integrated

CPNs with the CPNs modeling the IDDUseCaseD of the

IDD file (figure 4).

3.1.3. Scenarios integration

In this activity, we aim to combine all the CPNs

corresponding to the scenarios of the use case UCi, in order

to produce integrated CPNs modeling the behavior of the

use case. After integrating the two scenarios, the initial

place B (see figure 10) will be shared, yet we do not know

which scenario will be executed, and neither the token color

rc nor the token color ec can be assigned to the initial place

B. This problem was described by Elkoutbi and Keller and

it was referred to it as interleaving problem [3].

To solve the interleaving problem, we introduce a

composite color set, i.e., a token color that can take on

several colors. Using CPN Tools [13][15]-[16] a color set

is modeled by a list of colors. Upon visiting the places of

the integrated CPNs, it will be marked by the intersection of

its token colors of the place being visited. When the token

passes to the place S4, it keeps the color set (rc, ec) to S5

its color changes to (rc) and will remain unchanged for the

rest of its route, or it passes from the place S4 to the Place

S8 its color changes to (ec) and will remain unchanged for

the rest of its route.

Figure 8 : A CPN corresponding to the RegularGeneration

scenario.

Figure 9 : A CPN corresponding to the ErrorGeneration scenario

Transitions that belong to only one of the scenario

RegularGeneration or ErrorGeneration will be guarded by

the token color of the respective scenarios (see transitions:

(getcomments, confirm) and transitions: (error_name,

continue). But this is not the case for transitions:

(valid_name and invalid_name) which are required to

transform colors from the color set (list of token colors) to a

single color. Therefore they must be guarded by the

composite color set. For transitions that are shared by the

two scenarios RegularGeneration and ErrorGeneration,

they will be guarded by the composite color set (see figure

10).

Figure 10 : Integrated CPN of the scenarios integration process.

Object

messages
Developer ICS

Input

Object

Scenario

State

Provide

Class
Present

Select

Object

Void

S1

New Object Present
Select

Object

Object

Generated
S2

Enter

Object

Name

Present
Prompt

Name

Object

Generated
S3

Validate

Name
Present

Name

Entered

Validate

Name
S4

Invalid

Name
Present

Name

Entered

Invalid

Name
S8

Error

Name
Present Error

Invalid

Name
S9

Continue Present Continue
Invalid

Name
S10

A. BACHKHAZNADJI, A. BELHAMRI

 26

Integrated colored Petri-net corresponding to a given

use case can be connected to the colored Petri-net derived

from the PN of the use case diagram (see figure 7) through

a substitution transition UseCase (see figure 11), which is

appended to the place B of the integrated colored Petri-net.

This substitution transition will transform tokens of the

colored Petri-net of the use case diagram to the composite

color set of the integrated colored Petri-net. The colored

Petri-net can be organized as a set of hierarchically related

modules.

Figure 11 : A substitution transition UseCase graph.

4. INTERFACE PROTOTYPE GENERATION

In this activity, we derive from the colored Petri-net

specification an interface prototype. The generated interface

comprises a menu to switch between use cases which are

directly accessible from the initial state (place Init) of the

IDD interface. The various screens of the interface

prototype represent the static aspect, the dynamic aspect of

the interface Prototype, as captured in the colored Petri-net

specification, maps into the dialog controls of the interface

prototype. In our current implementation, prototypes are

Java (an OOP language) application comprising each a

number of frames and navigation functionalities, Fig 12.

Figure 12 : Java implementation of the IDD interface prototype

For the purpose of IDD interface prototype generation,

system view is appropriate when in all use cases and

associated scenarios; only one actor interacts with the IDD

interface. In the case of collaborative tasks (more than one

user interacts with the use cases), however, an object view

will be more suitable.

CONCLUSION

In this paper, we have proposed an approach for

elaborating specifications of an interactive IDD system

behavior by using two kinds of colored Petri-nets: a simple

Colored Petri-Nets modeling the relation of the proposed

IDDUseCaseD linked to several colored Petri-nets

representing the use case behaviors as integrated CPNs

which merge several scenarios to the same use case and

preserves the independency between these scenarios after

integration by means of color sets. There are many

advantages with the proposed approach. First, the process

of scenario acquisition is more structured.

 Colored Petri-nets are among the most powerful visual

formalism used for specifying complex and interactive

system. Colored Petri-nets are known for their support of

pure concurrency, all transitions having sufficient number

of tokens in their input places may concurrently be fired.

Colored Petri-nets in their basic form do not support

hierarchy, but the extension of colored Petri-nets used in

tools such as CPNTools software allows for hierarchies in

the specification [16]. Non-deterministic choices can be

more easily modelled using colored Petri-nets. When two or

more transitions share the same input places, the system

(CPNTools) chooses randomly to fire one of these

transitions (section IV.1.3). Tokens that are specific to

colored Petri-nets can be used both in controlling and

simulating the IDD interface behavior and in modelling

data and resources of that system. If the place Init of the Fig

7 contains only one token, the IDD interface system can

just execute one use case at a time. When the place Init

contains n tokens, n concurrent executions of different use

cases are possible. It may be possible to execute n scenarios

of the same use case (multiple instances).

In this work, we acquire scenarios use case by use case

which we consider as more natural. Secondly, as a

consequence of using Colored Petri-nets, the approach

permits the modeling of concurrency between use cases,

between scenarios and between copies of the same scenario.

Finally, the approach solves the problem of interleaving

scenarios by means of composite color sets.

As future work, we plan to pursue further development

in particular the automation of the scenarios integration

activity by introducing an algorithm which takes an

incremental approach to integration. Given two scenarios

with corresponding colored Petri-nets (CP-net1 and CP-

net2); the algorithm will merge all places in CP-net1 and

CP-net2 having the same names. The merged places will

have as token colors the union of token colors of the two

scenarios. Then, the algorithm looks for transitions having

the same input and output places in the two colored Petri-

nets and merges them to obtain the integrated colored Petri-

net.

Modeling input data classes of the building energy simulation program EnergyPlus with scenarios …..

 27

Références

[1] J. Rumbaugh, J. Jacobson, G. Booch, The Unified Modeling

Language, Reference Manual (Addison Wesley Inc., 1999).

[2] I. Kriss, M. Ekoutbi, R.K. Keller, P.A. Muller, Automating

the Synthesis of UML Statecharts Diagrams from Multiple

Collaboration Diagrams, In Bezivin ed., UML 98 Springer,

LNCS 1618, Beyond the Notation:132-147, 1999.

[3] M. Elkoutbi, R.K. Keller, Modeling Interactive System with

Hierarchical Colored Petri Nets, In Proc. of Adv. Simulation

Technologies Conf., pp. 432-437, Boston M.A., Soc. Comp.

Simulation Intl HPC98 Special Session on Petri-Nets, 1998.

[4] S. Sialhir, Learning UML, (O’Reilly Edition, 2003).

[5] L.M. Kristensen, Jorgensen, K. Jensen, Application of

Colored Petri Nets in System Development, Springer-Verlag,

In Lectures on Concurrency and Petri Nets- Advances in Petri

Nets, Proc. of 4th Advanced Course on Petri Nets, Vol. 3098 of

Lecture Notes in Computer Science: 626-685, 2004.

[6] A. Bachkhaznadji, A. Belhamri, A Model Driven Application

for HVAC Energy Simulation Data: EnerMDA, In Proc. of 3rd

Mediterranean Congress of HVAC Engineering, Vol. 2, pp.

563-572, Climamed, Lyon France 20-21 November 2006.

[7] EnergyPlus, version 3.0,

app1.eere.energy.gov/building/energyplus/

[8] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C. Chen,

Formal Approach to Scenario Analysis, IEEE Software, Vol.

11,(Issue 2): 33-41,1994.

[9] K. Jensen, Colored Petri-Nets, Basic Concepts, Analysis

Methods and Practical Use, Practical use, Springer-Verlag

Vol. 3, 1997.

[10] L. Liang, From Use Cases to Classes, A Way of Building

Object Model with UML, Journal of Information and

Software Technology, Vol.45: 83-93,2003.

[11] I. Graham, Use Cases Combined with Booch/OMT/UML,

Process and Products, Journal of Object Oriented

Programming, 76-78, 1998.

[12] M. Glinz, Statecharts for Requirements Specifications, As

simple as Possible, as Rich as Needed. Position Paper in the

ICSE 2002 Workshop: Scenarios and state machine models,

algorithms, and tools, Orlando, Florida, USA. 2002.

[13] M. Elkoutbi, , I. Khriss, R. K. Keller, Automated Prototyping

of User Interface Based on UML Scenarios. Journal of

Automated Engineering: 5-40, 2006.

[14] M. Elkoutbi, R. K. Keller, User Interface Prototyping based

on UML scenarios and High-level Petri-Nets. Paper presented

at the 21st International Conference on ATPN, Springer-

Verlag LNCS 1825, pp.166-186, Aarhur, Denmark, 2000.

[15] CPN Tools version 2.2.0. Department of Computer Science,

University of Aarhus 2006. Available at: http://

wiki.diami.au.dk/cpntools/.

[16] Jensen, K. Colored Petri-nets, Basic Concepts, Analysis

Methods and Practical use. Volume3: Practical use, Springer-

Verlag. 1997.

