AN ADVANCED MODEL FOR DOPANT DIFFUSION IN HEAVILY IMPLANTED POLYCRYSTALLINE SILICON THIN FILMS

Auteurs-es

  • S ABADLI Université Constantine 1
  • F MANSOUR Université Constantine 1

Mots-clés :

modeling, boron, diffusion, grain-growth, grain-boundaries, polysilicon

Résumé

This work is dedicated to the study of the transient enhanced diffusion (TED) of boron in polycrystalline-silicon thin films. This phenomenon is a major problem for the development of P+ polysilicon gate metal-oxide-semiconductor (MOS) devices; for future polysilicon technologies. The highly doped, P+, gate is made by ion implantation followed by thermal post-implantation annealing. In these conditions, the boron atoms diffuse in a transient and enhanced way which can be some thousand times to some hundred times faster than in equilibrium. At the same time, the solubility limt excess due to the very strong doping level and ion-implantation damages, lead to various complex phenomena
sush as dopant trapping, segregation, and clustering. Taken all these phenomena into account, we propose a theoretical one-dimensional two-stream diffusion model adapted to the granular structure of polycrystalline-silicon and to the effects of the strong-concentrations. This model includes dopant clustering in grains as well as in grain boundaries. Moreover, growth of grains and energy barrier height are coupled with the dopant diffusion coefficients and the process temperature based on thermodynamic concepts. The adjustment of the simulated profiles with the experimental SIMS profiles, for short treatment times ranging between 1 and 30 minutes at different temperatures (700, 750 and 800°C), will allow the study of the boron transient enhanced diffusion; as well as the understanding of the grainsgrowth effect on boron diffusion during annealing

Bibliographies de l'auteur-e

S ABADLI, Université Constantine 1

Département d’Electronique Faculté des Sciences de
l’Ingénieur

F MANSOUR, Université Constantine 1

Département d’Electronique Faculté des Sciences de
l’Ingénieur

Références

B. Yu, D. H. Ju, W. C. Lee, N. Kepler, T. J. King and C. Hu,

“Gate engineering for deep-submicron CMOS transistors,”

IEEE, Trans. Electron Devices, Vol. 45, (1998), pp. 1253-

A. J. Walker, S. B. Herner, T. Kumar and En-H. Chen, “On

the conduction mechanism in polycrystalline silicon thin-film

transistors,” IEEE, Trans. Electron Devices, Vol. 51, No. 11,

(2004), pp. 1856-1866.

J. R. Pfiester, F. K. Baker, T. C. Mele, H. H. Tseng, P. J.

Tobin, J. D. Hayden, J. W. Miller, C. D. Gunderson and L. C.

Parillo, “The effects of boron penetration on P+ polysilicon

gated PMOS devices,” IEEE Trans. Electron Devices, Vol.

, No. 8, (1990), pp. 1842-1847.

T. Aoyama, K. Suzuki, H. Tashiro, Y. Tada, H. Arimoto, and

K. Horiuchi, “Flatband voltage shift in PMOS devices caused

by carrier activation in p+ polycrystalline silicon and by boron

penetration,” IEEE, Trans. Electron Devices, Vol. 49, (2002),

pp. 473-479.

L. Pelaz, V. C. Venezia, H. J. Gossmann, G. H. Gilmer, A. T.

Fiory, and C. S. Rafferty, “Activation and deactivation of

implanted B in Si,” Appl. Phys., Lett., Vol. 75, No. 5, (1999),

pp. 662-664

Masashi Uematsu, “Simulation of high-concentration boron

diffusion in silicon during post-implantation annealing,” Jpn.

J. Appl. Phys., Vol. 38, (1999), pp. 3433-3439.

M. Jaraiz, G. H. Gilmer and J. M. Poate, “Atomistic

calculations of ion implantation in Si: point defect and

transient enhanced diffusion phenomena,” Appl. Phys., Lett.,

Vol. 68, No. 3, (1996), pp. 409-411.

H. Schaber, R. V. Criegern and I. Weitzel, “Analysis of

polycrystalline silicon diffusion sources by secondary ion

mass spectrometry,” J. Appl. Phys., Vol. 58, No. 11, (1985),

pp. 4036-4042.

Masashi Uematsu, “Simulation of clustering and transient

enhanced diffusion of boron in silicon,” J. Appl. Phys., Vol.

, No. 9 (1998), pp. 4781-4787.

J. Marcon, L. Ihaddadene-Le Coq, K. Masmoudi and K.

Ketata, “An investigation on the modeling of boron-enhanced

diffusion of ultralow energy implanted boron in silicon,”

Materials Science and Engineering, B, 124-125 (2005), pp.

-418.

R. Mahamdi, F. Mansour, E. Scheid, P.T. Boyer and L.

Jalabert, “Boron diffusion and activation during heat

treatement in heavily doped polysilicon thin films for P+

Metal-Oxyde-Semiconductor transistors gates,” Jpn. J. Appl.

Phys., Vol. 40, (2001), pp. 6723-6727.

R. W. Cahn, P. Haasen, and E. J. Kramer, “Materials Science

and Technology: Electronic structure and properties of

semiconductors,” Ed. Weinheim New York: Basel-

Chambridge, Vol. 4, (April 1991), pp. 254-275.

S. Solmi, F. Baruffaldi and R. Canteri, “Diffusion of boron in

silicon during post-implantation annealing,” J. Appl. Phys.,

Vol. 69, No. 4, (1991), pp. 2135-2142.

S. Batra, M. Manning, C. Dennison, A. Sultan, S.

Bhattacharya, K. Park, S. Banerjee, M. Lobo, G. Lux, C.

Kirschbaum, J. Noberg, T. Smith and B. Mulvaney,

“Discontinuity of B-diffusion profiles at the interface of

polycrystalline Si and single crystal Si,” J. Appl. Phys., Vol.

, No. 8, (1993), pp. 3800-3804.

L. Pelaz, G. H. Gilmer, H. J. Gossmann, C. S. Rafferty, M.

Jaraiz and J. Barbella, “B cluster formation and dissolution in

Si: A scenario based on atomic modeling,” Appl. Phys., Lett.,

Vol. 74, (1999), pp. 3657-3660.

H. Puchner and S. Selberherr, “An advanced model for

dopant diffusion in polysilicon,” IEEE, Trans. Electron

Devices, Vol. 42, No 10, (1995), pp. 1750-1754.

A. D. Sadovnikov, “One-dimensional modeling of high

concentration boron diffusion in polysilicon-silicon

structures,” Solid-State Electronics, Vol. 34, No. 9, (1991),

pp. 969-975.

V. Probst, H. J. Bohm, H. Schaber, H. Oppoler and I.

Weitzel, “Analysis of polysilicon diffusion sources,” J.

Electrochem Soc., Vol. 135, No. 3, (1988), pp. 671-676.

R. B. Fair, “Concentration profiles of diffused dopants in

silicon,” Impurity Doping Processes in Silicon, F. F. Y. Wang,

Ed. New York: North Holland, (1981), pp. 315-442.

J. Y. W. Seto, “The electrical properties of polycrystalline

silicon films,” J. Appl. Phys., Vol. 46, No. 12, (1975), pp.

-5254.

G. Baccarani, B. Ricco and G. Spadini, “Transport properties

polycrystalline silicon films,” J. Appl. Phys., Vol. 49, (1978),

pp. 5565-5570.

S. K. Jones and C. Hill, “Modeling dopant diffusion in

polysilicon,” Simulation of Semiconductor Devices and

processes, Vol. 3, (1988), pp. 441-449.

H.-J. Kim and C.V. Thompson, “Kenetic modeling of grains

growth in polycrystalline silicon films doped with phosphorus

or boron,” J. Electrochem. Soc., Vol. 135, (1988), pp. 2312-

M. M. Mandurah, K. C. Saraswat, C. R. Helms and T. I.

Kamins, “Dopant segregation in polycrystalline silicon,” J.

Appl. Phys., Vol. 51, No. 11, (1980), pp. 5755-5763.

B. Swaminathan, E. Demoulin, T. W. Sigmon, R. W. Dutton

and R. Rif, “Segregation of arsenic to the grain boundaries in

polycrystalline silicon,” J. Electrochem Soc., Vol. 127, No.

, (1988), pp. 2227-2229.

M. M. Mandurah, K. C. Saraswat, C. R. Helms and T. I.

Kamins, “A model for conduction in polycrystalline silicon –

Part II: comparison of theory and experiment,” IEEE, Trans.

Electron Devices, Vol. ED-28, No. 10, (1981), pp. 1171-1176.

J. Akhtar, S. K. Lamichhane, P. Sen, “Thermal-induced

normal grain growth mechanism in LPCV polysilicon film,”

Materials Science in Semiconductor Processing, Vol. 8,

(2005), pp. 476-482.

G. Giroult, A. Nouailhat and M. Gauneau, “Study of Wsi2 /

polycrystalline silicon / monocrystalline silicon structure,”

Appl. Phys., Vol. 67, (1990), pp. 515-523.

Téléchargements

Publié-e

2007-12-01

Comment citer

ABADLI, S., & MANSOUR, F. (2007). AN ADVANCED MODEL FOR DOPANT DIFFUSION IN HEAVILY IMPLANTED POLYCRYSTALLINE SILICON THIN FILMS. Sciences & Technologie. B, Sciences De l’ingénieur, (26), 23–30. Consulté à l’adresse https://revue.umc.edu.dz/b/article/view/228

Numéro

Rubrique

Articles

Articles similaires

1 2 > >> 

Vous pouvez également Lancer une recherche avancée d’articles similaires à cet article.