MODELLING OF ENVIRONMENT EFFECT ON THE FATIGUE OF AN AISI 316L STEEL

h SEDJAL, F HELLAL

Résumé


      The analysis of the behaviour of austenitic stainless steels, under dynamic stress in physiological medium, remains important in order to determine their lifetime when they are used in implantology. In this
purpose, simulations of fatigue corrosion of pre-notched specimens were carried out. Input notch data were taken from stable pits obtained by preliminary polarization tests in a solution of FeCl2, by taking two different concentrations (0,5 and 1M). Calculations were made using effective mechanical and electrochemical conditions observed on human body implants. Two fatigue models have been applied. Höeppner model is only a mechanical one, whereas Newman model adds chemical effect.
        Numerical results indicates the number of cycles leading to critical size of pits-to-crack transition and then to failure. Furthermore, the effect of the initial notch size on fatigue behaviour of the stainless steel is highlighted. Both models indicate that decreasing initial notch size raises the number of cycles to failure.
Adding chemical action to mechanical one accelerates the damage, in general. However, at higher sizes, one can observe a slowing down of the chemical effect. The curve of Wöhler for different mediums and
values of applied stress shows that the mechanical action has much more influence when high loads are applied. As the stress applied decreases, the electrochemical effect becomes extensive and reduces considerably the lifetime of material. The prediction of lifetime needs thus to include the effect of other parameters, such as stress frequency, in order to compare it with real implant lifetime.


Mots-clés


Austenitic stainless steel; fatigue; corrosion; pits; air

Texte intégral :

PDF

Références


R. SCHMIDT, Comportement des matériaux dans les milieux

biologiques, Presses Polytechniques et Universitaires

Romandes, 1999.

D.W. HOEPPNER, A. TAYLOR, V. CHANDRASEKARAN,

Review of Pitting Corrosion Fatigue Models, Structural

Integrity for the Next Millennium, Books in the International

Committee on Aeronautical Fatigue, (ICAF) series, ICAF20,

N. PEREZ, Fracture mechanics, Kluwer Academic Publishers,

J.C. NEWMAN, I.S. RAJU, An empirical stress intensity

factor equation for a surface crack, Engineering Fracture

Mechanics, Vol. 15, Issues 1-2, 1981, pp. 185-192.

Z. RUOXUE, M. SANKARAN, Reliability-based

reassessment of corrosion fatigue life, Structural safety, Vol.

, 2001, pp. 77-91.

H. SEDJAL, L. ROUIBAH, F. HELLAL, Modélisation de la

durée de vie d’un acier inoxydable austénitique de type 316L,

préalablement piqûré, soumis à une sollicitation dynamique

par flexion, Matériaux 2006 2ème conférence interdisciplinaire

sur les matériaux, Dijon, France 13-17 Nov 2006.

D. LANDOLT, Corrosion et chimie de surfaces des métaux,

Presses Polytechniques et Universitaires Romandes,

Lausanne, 1993.

U. KAMACHI MUDALI, T.M. SRIDHAR, R. BALDEV,

Corrosion of bio implants, Sadhana, Vol. 28, Parts 3 & 4,

June-August 2003, pp.601–637.

S. BRAHMI, Etude de la propagation des cracks de fatigue

dans les matériaux métalliques et des conséquences des

processus de déformation plastique à fond de cracks, Thèse de

Doctorat, Université Paris VI, 1991.

PO-FU KUO, Notch effect on high-cycle corrosion fatigue

for AISI 347 stainless steel, PhD Thesis, NCU, Taiwan, 2003.

G. MURTAZA, R. AKID, Empirical corrosion fatigue life

prediction models of high strength steel, Engineering Fracture

Mechanics, Vol. 67, 2000, pp. 461-474.

S. LAMPMAN, Fatigue and fracture properties of stainless

steel, Fatigue and fracture Handbook, Vol. 19, ASM

International, 1996.

H. P. LIEURADE, Essais de fatigue- corrosion, Techniques

de l’ingénieur, M135, 1996


Renvois

  • Il n'y a présentement aucun renvoi.




Direction des Publications et de l'animation scientifique

Université des Frères Mentouri Constantine 1. Route Ain El-Bey. 25000. Algérie.