EFFECTIVENESS OF THE FLAVONOIDS ISOLATED FROM *Thymus inodorus* BY DIFFERENT SOLVENTS AGAINST SOME PATHOGENIS MICROORGANISMS

Reçu le 13/12/2014 – Accepté le 03/11/2015

BEHIDJ-BENYOUNES Nassima¹, DAHMANE Thoraya, ALLEM Abderrahman

1 Laboratory of soft technologies, valorisation, physico-chemistry of biological material and biodiversity, Department of biology, Faculty of sciences, University of Boumerdes, 35000 Algeria.

Résumé

L'objectif est d'étudier l'activité antimicrobienne des flavonoïdes issus de la partie aérienne d'une plante médicinale : *Thymus inodorus* appartenant à la famille des Lamiaceae par la méthode de diffusion en milieu gélosé sur des microorganismes pathogènes. Il s'agit de *Staphylococcus aureus*, d'*Escherichia coli*, de *Pseudomonas fluorescens*, d'*Aspergillus niger*, d'*Aspergillus fumigatus et* de *Candida albicans*. Au cours de cette étude, une extraction des flavonoïdes par entrainement à la vapeur est effectuée. Pour l'extrait aqueux, on a obtenu un rendement en flavonoïdes de 7,242%. Tandis que pour l'extrait butanolique, on a un rendement de 28,86 %. Concernant l'extrait d'acétate d'éthyle, on note un rendement de 29,875%. En fin pour l'extrait di – éthylique, le rendement obtenu est de 22,9%. L'évaluation de l'effet antibactérien montre que le diamètre de la zone d'inhibition diffère d'un microorganisme à un autre. L'exploitation des valeurs obtenues montrent que la souche bactérienne *P fluoresces*, et les trois levures et moisissures; *A. niger,A. fumigatus* et *C. albicans*. sont les plus résistantes. Par contre, *S. aureus* c'est montré la plus sensible aux extraits bruts, à la solution mère et aux différentes dilutions. Enfin pour, la concentration minimale inhibitrice est estimée uniquement avec l'extrait brut du flavonoïde de *Thymus inodorus*. En effet, ces extraits inhibent la croissance des bactéries Gram⁺ à une concentration variant entre 0,5 % et 1%. Tandis que pour les bactéries à Gram⁻, elle est limitée à une concentration de 0,5%.

Mot clés : Thymus inodorus, Activité antimicrobienne, extraction, les flavonoïdes, résistant, sensible.

Abstract

The aim was to investigate the antimicrobial activity of flavonoids isolated from the aerial part of a medicinal plant which is *Thymus inodorus* belonging to the Lamiaceae family by the middle agar diffusion method on following microorganisms. We have *Staphylococcus aureus*, *Escherichia coli*, *Pseudomonas fluorescens*, *AspergillusNiger*, *Aspergillus fumigatus* and *Candida albicans*. During this study, flavonoids extracted by stripping with steam are performed. The yields of flavonoids is 7.242% for the aqueous extract and 28.86% for butanol extract, 29.875% for the extract of ethyl acetate and 22.9% for the extract of di - ethyl. The evaluation of the antibacterial effect shows that the diameter of the zone of inhibition varies from one microorganism to another. The operation values obtained show that the bacterial strain *P fluorescens*, and three yeasts and molds; *A. Niger*, *A. fumigatus* and *C. albicans* are the most resistant. But it is noted that, *S. aureus* is shown more sensitive to crude extracts, the stock solution and the various dilutions. Finally for the minimum inhibitory concentration is estimated only with the crude extract of *Thymus inodorus* flavonoid. Indeed, these extracts inhibit the growth of Gram + bacteria at a concentration varying between 0.5% and 1%. While for bacteria to Gram-, it is limited to a concentration of 0.5%.

Key words: Thymus inodorus, Antimicrobial activity, Extraction, flavonoids, strains, solvents.

ملخص

الهدف من هذه الدراسة هوتقييم نشاط مضادات الميكروبات من الفلافونويد من الجزء الخارجي من النباتات الطبية : Thymus inodorus عن طريقة النشر على الكائنات الحية الدقيقة المسببة للأمراض . Escherichia coli, عن طريقة النشر على الكائنات الحية الدقيقة المسببة للأمراض . Escherichia coli, من النباتات الطبية : Lamiaceae عن طريقة النشر على الكائنات الحية الدقيقة المسببة للأمراض . Pseudomonas fluorescence, Aspergillus niger, A. fumigatus, Candida albicans. هذه الدراسة، يتم تنفيذ استخراج هذه المواد الكيماوية عن طريق التقطير بالبخار . في المستخلص المائي تم الحصول على مردود في العائد من 7.242٪ من الفلافونيدات . أما بالنسبة اللاستخراج بيوتانول، ولها عائد 28.86٪ . وفيما يتعلق مستخلص لمائي تم الحصول على مردود في العائد من 7.242٪ من الفلافونيدات . أما بالنسبة كان العائد وي يوانول، ولها عائد 28.86٪ . وفيما يتعلق مستخلص خلات الإيثيل، هناك العائد من 7.242٪ في النهاية استخراج ثنائي - الإيثيل، كان العائد من 7.242٪ . إن تقبيم تأثير مضاد الجراثيم يدل على أن قطر منطقة التثبيط يختلف من الكائنات الحية الدقيقة و تظهر القيم العملية أن . Pseudomota بيوانول، ولها عائد 28.86٪ . وفيما يتعلق مستخلص خلات الإيثيل، هناك العائد من 7.242٪ . في النهاية استخراج ثنائي - الإيثيل، والعائد 29.87٪ . إن تقبيم تأثير مضاد الجراثيم يدل على أن قطر منطقة التثبيط يختلف من الكائنات الحية الدقيقة و تظهر القيم العملية أن . Pseudoresce من العائد والخمائر والفطريات ثلاثة S. aureus على من الكائنات الحية الدقيقة و تظهر القيم العملية أن . وأن العائد 29.87٪ . إن تقبيم تأثير مضاد الجراثيم يدل على أن قطر منطقة التثبيط يختلف من الكائنات الحية الدقيقة و تظهر القيم العملية أن . P والمحدول الحمائر والفطريات ثلاثة S. aureus . هي الأكثر مقاومة بينما S. هي أكثر حساسية . وأخير مان العائد من 20.7% و المواديني العائدين العائد والمغر ين 3.0% والمعاين العائد والفري والمحدول على تركيز وربي ين تركيز مقاومة بينما S. مالمستخرج الخرام، فإنه يقتصر على تركيز . وي . م

الكلمات المفتاحية : نشاط مضادا البكتيريا، استخلاص، الفلافونويد، مقاوم، حساس، Thymus inodorus

S ince ancient times, human uses plants as medicines and remedies. Until now, the plants are still used for human health despite the efforts of chemists trying to synthesize new molecules [1]. By the 1990, the interest of large pharmaceutical companies has been diverted from ans products to combinatorial chemistry, claiming that in a few years the number of drugs would be higher. Therefore, the number of drugs has remarkably dropped knowing that for the synthesis of a single drug 10000 molecules must be synthesized and tested [2].

Based on these data, biologists and chemists recognize the major importance of natural products and the limitedness of the methods and the techniques of biotechnology and chemistry. This may explain the great interest in the search for compounds from natural sources. The unlimited number of plants constitutes a huge reservoir of new medicinal compounds with great potential, thanks to their molecules which have the advantage of a wide variety of chemical structures and biological activities. Aromatic plants are characterized by their richness in active ingredients and substances such as polyphenols and flavonoids. These products possess very important properties [**3**].

Despite the heterogeneous nature of the huge biodiversity of the African continent in general and Algeria in particular, there has been little effort devoted to the development of therapeutic agents of plant origin. In Algeria, it is possible to cite the work of **[4]**, on the evaluation of the antimicrobial effect of the essential oil of *Thymus numidicus* at Chrea.

That is why we are interested in the study of *Thymus inodorus* (labiates) which is a widespread Mediterranean species [5].

Through this study, there has been extraction by steam distillation of flavonoids from the aerial part of the *Thymus inodorus*, and evaluation of their antimicrobial activity by the agar diffusion media of the crude extract.

MATERIAL AND METHODS Material

In the plant, the used part is the aerial one, precisely the fruits which are rich in natural substances [1]. In this study, we have used an aerial parts of *Thymus inodorus* (Figure 1). Harvesting is done in the third of april 2014 in the forest of Bainem (Algiers).

The antimicrobial effect of the flavonoids isolated from *Thymus inodorus* is evaluated on many microorganisms. It was tested on three bacterial stumps; *Staphylococcus*

aureus, Pseudomonas fluorescens, and *Escherichia coli.* It was studied on one kind of yeast (*Candida albicans*). Finally two mouldes which are the *Aspergillus niger,* and the *Aspergillus fumigatus.* It's noteworthy that these agents are characterized by an important frequency of contamination and phatogynicity.

Fig.1: Thymus inodorus (original).

METHODS OF THE STUDY Flavonoids extraction

The flavonoids extraction is performed according to Markham method (1982) with modification inspired from Bruneton method (1999). It is based on the solubility degree of flavonoids in organic solvent. The method comprises two main steps. The first step is done with methanol to dissolve the flavonoids. The second is carried out with ethylic ether to remove free genius, ethyl acetate (extraction of monoglycosdes) and n-butanol (extraction of di and tri glycosides). The macerate is filtered and then evaporated to pressure at 35 ° C (Rota Vapor, Stuart, England). The obtained aqueous phase is stored for 48 h at 4 ° C to accelerate the diffusion of molecules in the solvent. At this level, the filtrate is freed of waxes, fats and chlorophyll by three successive washings with petroleum ether (V / V) to have an aqueous phase in order to separate flavonoids from aglycones fractions, monoglycosides and di and ri glucosides. This recovered phase is mixed with ethylic ether (V / V) to obtain an organic phase containing the aglycones flavonoids and methyl aglycones. The remaining aqueous phase undergoes three extractions with ethyl acetate, to recover in the organic phase some aglycones flavonoids, mono- glycosides in particular. The remaining aqueous phase is mixed with the n_butanol to recover di and triglucosides flavonoids. The final aqueous phase contains the most polar glycolysis flavonoids. The four collected fractions are concentrated by evaporation at low pressure at 35 °C ([6], [7]).

Antimicrobial activity

The antimicrobial activity of flavonoids taken from *Thymus inodorus* L. aerial parts is determined by the method of diffusion in an agar environment cited by **[8]**, and **[9]**. The

first step is the preparation of the microbial strains. It is followed by an antibiogram. This method has the advantage of being very flexible in the choice of the tested antibiotics, to be applied on a big number of bacterial species, and to be largely evaluated during 50 years of world usage **[10]**.

Determination of minimum inhibitory concentrations (MIC)

Defining is necessary to describe the antimicrobial activity of a compound of simple parameters. For the antimicrobial activity, the most common is the minimum inhibitory concentration (MIC) which may be determined by direct contact in agar or liquid medium. It corresponds to the concentration required to completely inhibit the growth of a determined number of germs after a given incubation time **[11]**.

Method of dilution in a solid medium

According to [10], the MIC is defined as the lowest flavonoid concentration capable of inducing a reduction in microbial growth of 90%; therefore, allowing the survival of only 10% of the population.

Several substances are used for this purpose namely ethanol [12], methanol [13], the tween-20 [14], the (DMSO) [15], n-hexane [16], poly ethylene glycol [17] (Pingot, 1998), Tween-80 [18] and agar [14].

Preparation of dilution series

To prepare the dilution series, first 200 ml of liquified culture medium at 95 °C in the water bath, by adding 1 ml of Tween 80. A dilution is prepared in 2% flavonoids tested by diluting 1 ml of the flavonoid extract in 50 ml of medium. After, 1 bottle is homogenized. Then, are poured 25 ml of this content to another flask. Adjuste to 50 ml of the medium for a dilution of 1%. This continues until obtaining 0.03%.

From each prepared dilution, 20 ml was poured into each petri dish and let to be solidified. Boxes are partitioned into two parts, one part is seeded through spotage by using a micro syringe 3UI of each microbial suspension of 10^{-4} dilution.

Reading

The MIC is defined as the absence of visible growth at the spots knowing that the presence of one or two colonies is not considered.

RESULTS AND DISCUSSION

Extraction and characterization of flavonoids Flavonoid yield

For the plant, the obtained aqueous extract has a gelatinous aspect, colored in orange-red. The yields obtained for the different extracts (di ethyl, ethyl acetate, butanol and aqueous).

The flavonoids yields are showed in the following table.

Table 1: flavonoid yield

Different extracts	Yield
D ethyl	22.9%
Ethyl acetate	29.88%.
Butanol	28.86%.
Aqueous	7,24%

Study of antimicrobial activity of aqueous extracts

The tests on the study of antimicrobial activity showed that aqueous extracts obtained from *Thymus inodorus* act differently on the tested strains. The diameters values of inhibition zone of the crude extracts and various dilutions are shown in Table 2.

Solubility of microbial strains

The findings of this study show that *P. fluorescens* is sensitive to the crude extract, and resistant to various dilutions 1/2, 1/4 and 3/4. The minimum inhibitory concentration (MIC) obtained relates to the crude extract .S. aureus is very sensitive to the crude extract. However, this strain seems to be sensitive to the parent strain and to dilutions 1/2, 1/4 and 3/4. Since the strain is sensitive to all dilutions, the estimation of the (MIC) obtained relates to the crude extract. It is noticed that E. coli is sensitive to the crude extract, and resistant to different dilutions 1/2, 1/4 and 3/4. The minimum inhibitory concentration (MIC) obtained concerns the crude extract. It should be noted that A. Niger is sensitive to dilution 3/4 and 1 / 2 of the crude extract. However, this strain has demonstrated to be crude extract-resistant and to 1/4 dilution. The minimum inhibitory concentration (MIC) requires the completion of other dilutions. To A. fumigatus, it may be noted that this species is sensitive to the crude extract and 3/4 dilution. Thus, it is resistant to the stock solution and dilutions 1/2, 1/4. The minimum inhibitory concentration (MIC) requires

the completion of other dilutions. Finally, *C. albicans* is resistant to the crude extract, and various dilutions.

Table 2:	: Values	of the	diameters	of zones	of inhibition
obtained	with the	aqueou	s extract of	Thymus is	nodorus.

Strains	Numbe	Dilution	Diameter		Average	
	r of test	S	s (mm)		S	
S. aureus	2	SM	13	16	14,5	
		3⁄4	12	14	13	
		1⁄2	10	14	12	
		1⁄4	10	10	10	
E. coli	2	SM	13	12	12,5	
		3⁄4	09	13	11	
		1/2	10	11	10.5	
		1⁄4	09	10	09.5	
Р.	2	SM	12	14	13	
fluorescen		3⁄4	09	13	11	
S		1⁄2	10	12	11	
		1⁄4	09	12	10.5	
A. niger	2	SM	09	09	09	
		3⁄4	09	11	10	
		1/2	09	12	10.5	
		1⁄4	09	09	09.5	
<i>A</i> .	2	SM	09	10	09.5	
fumigatus		3⁄4	11	10	10.5	
		1/2	10	09	09	
		1⁄4	09	09	09	
С.	2	SM	09	09	09	
albicans		3⁄4	09	10	09.5	
		1/2	11	09	09.5	
		1⁄4	09	09	09	

Through the obtained results, it is noted that thyme flavonoids have a strong antibacterial activity to (Gram +) bacteria and low antimicrobial effect on (Gram) bacteria. Thus, thyme flavonoids are not active on tested yeasts and molds. According to [19], the antimicrobial effect is explained by the presence of chemical molecules such as monoterpene alcohols, sesquiterpene which are endowed with excellent antibacterial factors. This can cause the release of cellular components that change the content and the composition of fatty acid and phospholipid bacteria. It, thus, causes disturbance of electron transport or the nutrient intake and affects the synthesis of nucleic acids. Monoterpenes may inhibit the development of enzymes responsible for the growth of these germs which are behind their antiseptic power. **[19]** show that the Gram-positive bacteria are more sensitive to the action of flavonoids comparing to Gram-negative bacteria. Thus, **[20]**, having worked on the antimicrobial effect of flavonoids on a number of species of thyme, in particular the odourless thyme of Tlemcen region, reports that the flavonoids of *Thymus inodorus* have a significant inhibitory effect on Gram positive bacteria. But this inhibition is average on Gram negative bacteria. Thus, the same author notes that among the flavonoids derived from the different studied species of thyme, *T. inodorus* flavonoids are the ones that have better antimicrobial activity comparing to other species of thyme.

The results of this qualitative study deserve a more developed quantitative study to determine the minimum inhibitory concentration (MIC) and the minimum flavonoid concentration of *T. inodorus*.

Study of the minimum inhibitory concentration (MIC)

The results of the MIC are summarized in the table 3.

Tableau 3: Results of	OI.	the	MIC
-----------------------	-----	-----	-----

Ci	0.03	0.06	0.125	0.25	0.5	1	2
	%	%	%	%	%	%	%
Strains							
E.coli	+	+	+	+	-	-	-
<i>S</i> .	+	+	+	+	-	-	-
aureus							
Р.	+	+	+	+	+	-	-
fluoresc							
ens							

Ci : Concentrations (-):Inhibition (+):Growth

According to Table 3, flavonoids of *T. inodrus* inhibits the growth of Gram + bacteria at a concentration varying between 0.5% and 1%. While for bacteria Gram⁻, it is limited to a concentration of 0.5% (Table 4).

Tableau 4: minim	ım inhibitory	concentration	(MIC)	of
flavonoids of Thymi	s inodorus on	bacteria tested		

Strains	MIC
E. coli	0.5%
S. aureus	0.5%
P. fluorescens	1%

T. inodorus flavonoids have exerted a significant inhibitory activity towards the Gram-positive bacteria, except for *P. fluorescens* which is a bit resistant. Thus, *S. aureus* and *E. coli* are the most sensitive. They are inhibited from the minimum concentration of 0.5%. The concentration of 1% is sufficient to stop the growth of *P. fluorescens*.

Indeed, all the bacterial strains used were inhibited in a concentration varying between 0.5% and 1%.

The results obtained from the study of antimicrobial activity showed that *T. inodorus* flavonoids have different behaviors. Thus, it is noted that thyme flavonoids are effective on all the tested strains. This efficiency is greater towards the Gram-positive bacteria comparing to Gramnegative.

According to [19], Gram-positive bacteria are more sensitive to the action of flavonoids than Gram negative bacteria. [21] explains this phenomenon in that Gramnegative bacteria are equipped with a peptidoglycan layer wedged between the plasma membrane and an outer base formed of lipopolysaccharide and protein. This latter is not present in Gram-negative bacteria.

CONCLUSION

The extraction of flavonoids recovered from the aerial part of the odourless thyme by evaporation gave an interesting flavonoids yield which is 7.24% for the aqueous extract, 28.86% for butanol extract, 29.88% for the ethyl acetate extract and 22.9% for the extract di - ethyl.

Thus, the evaluation of the antimicrobial activity of flavonoids tested on six pathogens showed a slight inhibition on *E. coli, S. aureus, and P. fluorscens.* So a weak inhibition is observed in studied yeasts and molds.

In fact, *T. inodrus* flavonoids inhibit the growth of Gram + bacteria at a concentration ranging between 0.5% and 1%. While for Gram bacteria, the inhibition is limited to a concentration of 0.5%.

Knowing that Algeria has a huge plant biodiversity and each plant is characterized by a fairly large reservoir of secondary metabolites with therapeutic and specific pharmacological characteristics, it is hoped to exploit its resources in the medical and pharmaceutical field.

REFERENCES

[1]- ISERIN P. "Encyclopédie des plantes médicinales",. Larousse (ed.), France, (2009), p. 355.

[2]- BERUBE-GAGNON J. "Isolation et identification de composés antibiotiques des écorces de *Picea mariana*",. Mémoire de l'Université de Québec, (2006), 205 p. 205.

[3]- NAGHIBI F., MOSADDEGH M., MOTAMED S.M., GHORBANI A. Labiatae family in folk medicine in Iran: from ethnobotany to pharmacology. Iranian Journal of Pharmaceutical Research. Vol. 2. (2005). pp. 63-79.

[4]- BEHIDJ-BENYOUNES N., DAHMENE T., BEHIDJ K. K., GANA S., et CHEBOUTI N. Evaluation de l'effet antimicrobien de l'huile essentielle de *Thymus numidicus* à Chréa. Le VII^{ème} Séminaire International de Médecine Vétérinaire. Sous le thème: Santé Animale et Sécurité Alimentaire, Constantine, 11-12 Avril 2015.

[5]- MARTA C. "Activité antimicrobienne de plantes médicinales et aromatiques utilisées au Universida de Estadual de Campinas",. Brésil, (2006), p. 16.

[6]- MARKHAM K. "Techniques of flavonoid identification", Biological Techniques Series: Series editors: J.E. Treheme and P.H. Rubery, Academic Press France, (1982), p p. 36-93.

[7]- BRUNETON J. "Phytochimie. Plantes medicinales",. Tec-Doc (ed.), París, (1999), p. 315 p.

[8] - SACCHETTI G., MAIETTI S., MUZZOLI M., SCAGLIANTI M., MANFREDINI S., RADICE M., and BRUNI R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry. Vol. 91. (2005). pp. 621-632.

[9]- CELIKTAS O.Y., HAMES KOCABAS E., BEDIR E., VARDAR SUKAN F., OZEK T., and BASER K. H. C. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chemistry. Vol. 100. (2007). pp. 553-559.

[10]- FAUCHERE J L et AVRIL J L. " Bactériologie générale et médicale", Ellipses (ed.), France, Paris, (2002), p. 365.

[11]- HULIN A, DEGUILLAUME A. M., BRETAGNE S, et BEZIR Y. Bon usage des antifongiques dans le traitement des candidoses et aspergillose invasives. Journal of Pharmeutical Medecine. Vol. 24. (1998). pp. 125-38.

[12]- MARINO M., BERSANI C. and COMI G. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. International Journal of Food Microbiology. Vol. 67. (2001). pp. 187-195.

[13]- POLLIEN P., OTT A., MONTIGNON F., BAUMGARTNER M., MUÑOZ-BOX R. and ALAIN C. Hyphenated headspace-gas chromatography-sniffing technique: screening of impact odorants and quantitative aromagram comparisons. Journal of Agricultural Food Chemistry. Vol. 45 (7), (1997). pp. 2630–2637.

[14]- MANN C.M., COSS S. D. and MAEKHAM J. L. The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributrs to its tolerance to the essential oil of Melaleuca alternifolia (Tea tree oil). Letters in Applied Microbiology. Vol. 30. (2000). pp. 294 - 297.

[15] - FZUCHERE J. 2002 - Bactériologie générale et médicale. Éd. Ellipses, Paris, 365 p.

[16]- SENATORE F, NAPOLITANO F., and OZCAN M. Composition and antibacterial activity of essential oil from *Crithmum maritimum* L. (Apiaceae) growing wild in Turkey. Flavour and Frangrance Journal, Vol. 15. (2000). pp. 186 - 189.

[17]- PINGOT A. "Les huiles essentielles", (ed.), Tec. et Doc, Paris, France, (1998), pp. 230-236.

[18]- BROOKS J.D., and CORKE H. The *in vitro* antibacterial activity of dietary spice and medicinal herb extracts. International Journal of Food Microbiology. Vol. 117. (2007). pp.112- 119.

[19]- NAKATSU T, LUPO A, CHINN J R., KANG R. Biological activity of essential oils and their constituents. Studies in Natural Products Chemistry. Vol. 21. (2000). pp.571-631.

[20]- MEBAREKI N., " Extraction de l'huile essentielle de *Thymus fontanesii* application à la formulation d'une forme médicamenteuse-antimicrobienne". Thèse Magister. Faculté des hydrocarbures et de la chimie. Université. M'hamed Bougara Boumerdès, (2010), p 185.

[21]- CHATENET C., Actualités pharmaceutiques. Vol. 473. (2008). pp. 10-23.