EFFECTS OF MELATONIN AND FLUOXETINE ON OXIDATIVE STRESS PARAMETERS IN STREPTOZOTOCIN-INDUCED DIABETIC RATS

Auteurs-es

  • Redouane REBAI University of Mentouri Brothers, Constantine
  • Abdennacer BOUDAH University of Mentouri Brothers, Constantine

Mots-clés :

Diabetes mellitus, Melatonin, Fluoxetine, Lipid profile, Oxidative stress

Résumé

Chronic hyperglycemia is accompanied by excessive production of free radicals by various mechanisms. This is an indicator of the oxidative stress that is involved in the worsening of chronic complications related to diabetes mellitus. The objective of this study was to evaluate the beneficial effects of melatonin and fluoxetine on diabetes-induced lipid metabolism disorders, as well as on oxidative stress parameters in erythrocytes of diabetic rats following an intraperitoneal injection of streptozotocin (60 mg/kg). It was noted that both treatments exert a regulatory effect on blood glucose and lipid profile parameters, however only melatonin could decrease the lipid peroxidation and improve the antioxidant status in erythrocytes.

Bibliographies de l'auteur-e

Redouane REBAI, University of Mentouri Brothers, Constantine

Department of Biochemistry & molecular and Cellular Biology, Faculty of Natural and Life Sciences

Abdennacer BOUDAH, University of Mentouri Brothers, Constantine

Department of Biochemistry & molecular and Cellular Biology, Faculty of Natural and Life Sciences

Références

Matough, F. A., Budin, S. B., Hamid, Z. A., Alwahaibi, N., & Mohamed, J. (2012). The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos University Medical Journal, 12(1), pp. 5-18.

Tangvarasittichai, S. (2015). Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes, 6(3), pp. 456-480.

Achi, N. K., Ohaeri, O. C., Ijeh, I. I., & Eleazu, C. (2017). Modulation of the lipid profile and insulin levels of streptozotocin induced diabetic rats by ethanol extract of Cnidoscolus aconitifolius leaves and some fractions: Effect on the oral glucose tolerance of normoglycemic rats. Biomedicine & Pharmacotherapy, 86, pp. 562-569.

Adam, S. H., Giribabu, N., Rao, P. V., Sayem, A. S. M., Arya, A., Panichayupakaranant, P., ... & Salleh, N. (2016). Rhinacanthin C ameliorates hyperglycaemia, hyperlipidemia and pancreatic destruction in streptozotocin–nicotinamide induced adult male diabetic rats. European journal of pharmacology, 771, pp. 173-190.

Aebi H (1984) Catalase in vitro. Methods in Enzymology, 105, pp. 121-126.

Agil, A., Navarro‐Alarcón, M., Ruiz, R., Abuhamadah, S., El‐Mir, M. Y., & Vázquez, G. F. (2011). Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats. Journal of pineal research, 50 (2), pp. 207-212.

Akbarzadeh, A., Norouzian, D., Mehrabi, M. R., Jamshidi, S. H., Farhangi, A., Verdi, A. A., & Rad, B. L. (2007). Induction of diabetes by streptozotocin in rats. Indian Journal of Clinical Biochemistry, 22(2), pp. 60-64.

Anwar, M. M., & Meki, A. R. M. (2003). Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 135(4), pp. 539-547.

Baydas, G., Canatan, H., & Turkoglu, A. (2002). Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin‐induced diabetes mellitus. Journal of pineal research, 32(4), pp. 225-230.

Behr, G. A., Moreira, J. C., & Frey, B. N. (2012). Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder. Oxidative medicine and cellular longevity, pp. 2012,1-13.

Biagetti B and Corcoy R. (2013). Hypoglycemia associated with fluoxetine treatment in a patient with type 1 diabetes. World Journal of Clinical Cases, 1(5), pp. 169-171.

Bradford MM. (1976). A rapid and sensitive method for the quantities of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, pp. 248-254.

Buege, J. A., & Aust, S. D. (1984). Microsomal lipid peroxidation. Methods in enzymology, 105, pp. 302-310.

Chawla, D., Bansal, S., Banerjee, B. D., Madhu, S. V., Kalra, O. P., & Tripathi, A. K. (2014). Role of advanced glycation end product (AGE)-induced receptor (RAGE) expression in diabetic vascular complications. Microvascular research, 95, pp. 1-6.

Cooke, D. W., Plotnick, L. (2008). Type 1 diabetes mellitus in pediatrics. Pediatrics in review, 29, pp. 374-384.

Daubresse, J. C., Kolanowski, J., Krzentowski, G., Kutnowski, M., Scheen, A., & Gaal, L. (1996). Usefulness of Fluoxetine in Obese Non‐Insulin‐Dependent Diabetics: A Multicenter Study. Obesity Research, 4(4), pp. 391-396.

Elberry, A. A., Harraz, F. M., Ghareib, S. A., Gabr, S. A., Nagy, A. A., & Abdel-Sattar, E. (2015). Methanolic extract of Marrubium vulgare ameliorates hyperglycemia and dyslipidemia in streptozotocin-induced diabetic rats. International Journal of Diabetes Mellitus, 3(1), pp. 37-44.

Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, pp. 70-77.

Erman, H., Guner, I., Yaman, M. O., Uzun, D. D., Gelisgen, R., Aksu, U., ... & Uzun, H. (2015). The effects of fluoxetine on circulating oxidative damage parameters in rats exposed to aortic ischemia–reperfusion. European journal of pharmacology, 749, pp. 56-61.

Guillet, C. (2010). Implication des produits terminaux de glycation dans les complications liées au diabète. Nutrition clinique et métabolisme, 24(3), pp. 109-114.

Gülseren, L., Gülseren, S., Hekimsoy, Z., & Mete, L. (2005). Comparison of fluoxetine and paroxetine in type II diabetes mellitus patients. Archives of medical research, 36(2), pp. 159-165.

Ha, H., Yu, M. R., & Kim, K. H. (1999). Melatonin and taurine reduce early glomerulopathy in diabetic rats. Free Radical Biology and Medicine, 26(7), pp. 944-950.

Habig WH, Pabst MJ and Jakoby WB. (1974). Glutathione S-transferase the first step in mercapturic acid formation. Journal of Biological Chemistry, 249, pp. 7130-7139.

Haider, S., Ahmed, S., Tabassum, S., Memon, Z., Ikram, M., & Haleem, D. J. (2013). Streptozotocin-induced insulin deficiency leads to development of behavioral deficits in rats. Acta Neurologica Belgica, 113(1), pp. 35-41.

Jiang, T., Chang, Q., Cai, J., Fan, J., Zhang, X., & Xu, G. (2016). Protective effects of melatonin on retinal inflammation and oxidative Stress in experimental diabetic retinopathy. Oxidative medicine and cellular longevity, 2016, 1-10.

Montilla, P. L., Vargas, J. F., Túnez, I. F., Carmen, M., Agueda, M., Valdelvira, M., & Cabrera, E. S. (1998). Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. Journal of pineal research, 25(2), pp. 94-100.

Ozkol, H., Tuluce, Y., Dilsiz, N., & Koyuncu, I. (2013). Therapeutic potential of some plant extracts used in Turkish traditional medicine on streptozocin-induced type 1 diabetes mellitus in rats. The Journal of membrane biology, 246(1), pp. 47-55.

Rahimi, R., Nikfar, S., Larijani, B., & Abdollahi, M. (2005). A review on the role of antioxidants in the management of diabetes and its complications. Biomedicine & Pharmacotherapy, 59(7), pp. 365-373.

Rebai, R., & Boudah, A. (2016). Effects of fluoxetine administration on plasma lipids and depressive-like behavior induced by lipid peroxidation in cerebral cortex in diabetic rats. International journal of toxicological and pharmacological research, 8(4): pp. 232-236.

Rodriguez, C., Mayo, J. C., Sainz, R. M., Antolin, I., Herrera, F., Martin, V., & Reiter, R. J. (2004). Regulation of antioxidant enzymes: a significant role for melatonin. Journal of pineal research, 36(1), pp. 1-9.

Tan, D. X., Reiter, R. J., Manchester, L. C., Yan, M. T., El-Sawi, M., Sainz, R. M., ... & Hardeland, R. (2002). Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Current topics in medicinal chemistry, 2(2), pp. 181-197.

Vural, H., Sabuncu, T., Arslan, S. O., & Aksoy, N. (2001). Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. Journal of pineal research, 31(3), pp. 193-198.

Widmaier, J., Margenthaler J., & Sarel, I. (1995). Regulation of pituitary-adrenocortical activity by free fatty acids in vivo and in vitro. Prostaglandins leukotriennes and essential fatty acids, 52, pp. 179-183.

Ye, Z., Chen, L., Yang, Z., Li, Q., Huang, Y., He, M., & Hu, J. (2011). Metabolic effects of fluoxetine in adults with type 2 diabetes mellitus: a meta-analysis of randomized placebo-controlled trials. PLoS One, 6(7), e21551.

Téléchargements

Publié-e

2016-06-01

Comment citer

REBAI, R., & BOUDAH, A. (2016). EFFECTS OF MELATONIN AND FLUOXETINE ON OXIDATIVE STRESS PARAMETERS IN STREPTOZOTOCIN-INDUCED DIABETIC RATS. Sciences & Technologie. C, Biotechnologies, (43), 28–34. Consulté à l’adresse https://revue.umc.edu.dz/c/article/view/2573

Numéro

Rubrique

Articles

Articles similaires

1 2 > >> 

Vous pouvez également Lancer une recherche avancée d’articles similaires à cet article.