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Abstract  

The advancement made on sequencing technology over the last years has been 
impressive. However, a number of new instruments were commercialized, the most 
attractive and promising one was the MinIon from Oxford Nanopore technology, UK. It is a 
small USB device using the nanopore technology to sequence more than 100kbp of DNA 
single stranded in a short time without pre-amplification or optical steps. This review 
focusses on the use of the new sequencing technology to improve the molecular and the 
precision diagnostic. Herein, we expose the employment of MinIon device for 
characterization, monitoring and detection of mutations in infectious agents but also its 
application in precision diagnosis and mutation analysis in clinical oncology and 
immunologic research. 
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INTRODUCTION 
For a long time medicine prescribes the same drugs to 
treat all patients that have the same disease. These drugs 
have shown efficacy in some patient but they have 
different side effect in other. Recently, research has 
shown that the efficacy and the metabolism of drugs 
differ from an individual to another depending on its 
genetic composition and environmental factors (Nebert et 
Zhang, 2019). Hence, nowadays the improvement of 
molecular diagnostics in routine clinical care is needful. 

Gene sequencing has played an integral role in the 
advancement and understanding of disease pathology and 
treatment. A decade ago, a sequencing revolution was 
born with the advent of second-next generation 
sequencing (NGS). The most sold instruments are 
Illumina and Ion Torrent. The NGS technology works by 
detecting the incorporation of the labelled nucleotides 
directly without separation of DNA in a gel (Steinbock 
and Radenovic, 2015). Therefore, these technologies rely 
on multiple manipulation steps to covert native DNA in a 
form that can be detected using electrical or chemical 
signals by various sensing mechanisms. It is now clear 
that DNA manipulation can cause artifacts and 
inaccuracies in DNA measurements (Ozsolak,2012). In 
addition, each step limits them to short 100–400 bp read 
lengths due to inevitable phasing issues (when templates 
in a polymerase colony lose synchronicity). These shorter 
reads make genome, transcriptome, and metagenome 
assembly more challenging and leaves some areas of the 
human genome unresolvable (Leggett and Clark, 2017). 

On the other hand, the established of these platforms are 
very expensive, immobile, and require regular 
maintenance, making them a costly inclusion on a 
research proposal or programmatic intervention grant in 
the developing countries. 

The increasing demand for faster and cheaper genome 
sequencing results in the development of advanced 
sequencing technologies (Chaisson et al, 2015). Nanopore 
sequencing is belived to be one of the most promising 
sequencing technologies to reach foor gold standards set 
for the “$1000 Genome” project; targeted prevention, 
effective therapy, better vaccines, lower costs (wang et al, 
2015). Effectively, nanopore sequencing has changed the 
NGS landscape with cheap portable sequencers, rapid 
simple library preparation (15 min), and automated real-
time analysis. Those methods are valuable tools for 
clinical testing and could possibly enable small/mid-scale 
research centres and hospitals to conduct research studies 
by genotypic driver genes and selecting suitable 
therapeutic approaches (Norris, 2016). 

This review is an overview of the new genomic 
sequencing instrument “oxford nanopore technology” and 
its clinical employment for microbiology and precision 
diagnostic in cancer and immunology research. 

2- NANOPORE SEQUENCING 
In 2003, the first complete inventory was taken of the 
building blocks of the human genome. Since then, 
scientists have worked to develop a cheap method to 
quickly and reliably sequence an individual’s entire 
genome and have launched the international project “the 
1000$ genome” (Dondorp and Wert, 2013). The project 
led to the appearance of the next-generation sequencing 
instruments. 

Over the past two decades, it was shown that polymers 
and other analytes could be used to estimate the size of 
nanometer-scale features in protein ion channels for 
exemple, water-soluble polymers were used to physically 
characterize geometric featureswithin bacterial pore-
foring toxins, including the dimeter, location of the 
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limiting aperture and pore length (Kullman et al, 2002; 
Purnell and Schmidt, 2009). 
Recent advances suggest that these same nanometer-scale 
pores may become useful for the detection, identification, 
and characterization of a wide range of analytes, 
including polymers like DNA (Wang et al, 2018).  

This new wave of technologies is led by Pacific 
Biosciences (PacBio) of Menlo Park, CA, USA and by 
the relative newcomer, Oxford Nanopore Technologies 
(ONT), of Oxford, UK. Pacific Biosystems (Norris, 
2016). Both technologies analyze individual molecules of 
DNA with no need for artificial amplification, and 
generate longer reads than second-generation 
technologies, but both platforms have a relatively high 
error rate compared with Illumina’s <1% error rates 
(Leggett and Clark,2017) . 

In 2014, Oxford Nanopore Technologies (ONT) released 
a new third generation sequencing platform. The MinION 
is an USB-powered device, measuring 4 inches and 
weighting only 90g, commercialized together with two 
flowcells and reagents that cost only US$1000. ONT’s 
technology has already begun to universalize sequencing, 
giving to scientists the opportunity to acquire their own 
sequencer and to use genomics in their research. The 
ONT permit sequencing of none amplified native DNA of 
more than 100 kbp in a short time (2-10h) with an error 
rate varying between 3-15%. 

 
Figure 1: MinIon device (from oxford nanopore 

technologies).  

Nanopore sequencing has been shown to be able to 
discriminate individual nucleotides by measuring the 
change in electrical conductivity as DNA molecules pass 
through the pore. The most nanopores used are made by a 
single ion channel formed by the Staphylococcus aureus 
endotoxin α-hemolysin (Celaya et al, 2017), or 
Mycobacterium smegmatis porin A (MspA). These 
nanopores are narrow channels of 1 nm that only single 
stranded DNA or RNA chains can pass through them 
(Duan et al, 2016). To investigate double stranded DNA 
chains, it was proposed recently to explore the engineered 
bacteriophage phi 29 protein channel. It has a larger 
diameter, closer to 3.6 nm and higher conductance than 
other biological nanopores (Wang et al, 2018a).  

To replace the protein nanopores new solid-state 
nanaopres have been developped, they are more robust 
durable and mechanically more stable. However, solid-
state nanopores have not yet achieved the degree of 
precision in analyte 

physical characterization that their protein counterparts 
have demonstrated (Kasianowicz, 2012). 

3- Application of ONT to analyse genome of 
infectious agents: 
The MinIon technology has been applied to sequence 
genome and to detect mutation in infectious 
microorganisms (table 1). The device has been used to 
analyse resistant genes of tuberculosis stains in sub 
Saharan Africa (Bates et al., 2016) and in diagnostic and 
analysis of the Ebola virus in West Africa (Kilianski et al, 
2015). Another demonstration of the sequencing 
capabilities of MinION is provided by Quick et al, 2016 
that report it uses to monitor Ebola spread, to detect 
mutation sub-lineages and to evaluate patient’s response 
to vaccination. Similarly, the origin and spread of the 
Zika virus were analysed using the MinION sequencer in 
South America, the results were important for 
interpretation of the birth defects associated with Zika 
infection (Quick et al, 2017). 

Besides, 6 hours sequencing run time, were sufficient to 
identify E. coli genome. Three poxviruses (cowpox, 
vaccinia-MVA, and vaccinia-Lister) were also identified 
and differentiated down to the strain level, despite over 
98% identity between the vaccinia strains. The ability to 
differentiate strains by amplicon sequencing on the 
MinION was accomplished despite an observed per-base 
error rate of approximately 30% (Laver et al., 2015). A 
complete influenza virus genome was also obtained by the  
new sequencer and results shared greater than 99% 
identity with sequence data obtained from Illumina MiSeq 
and traditional Sanger-sequencing (Wang et al, 2015; 
Imai et al, 2018) 

Runtuwene et al., 2018 have described the application of 
the portable sequencer, MinION, for genotyping nine 
genes causing resistance to the malaria parasite 
Plasmodium falciparum. The study concluded that 
MinION could generate reads with long sequences and 
acceptable quality with sequence accuracy was less than 
90%. The ONT has also used to sequence the complete 
genome of Fusobacterium nucleatum, an oral bacteria that 
are associated with human pathologies as diverse as 
periodontitis, preterm birth, and colorectal cancer (Todd 
et al, 2018). 
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Table 1: application of MinIon technology for genome 
sequencing of some infectious agents 

Infectious 
agent Sequencing Reference 

Streptomyces 
avermitilis Complete genome Laver et al, 

2015 
Borrelia 

burgdorferi Complete genome Laver et al, 
2015 

E. coli K-12 Complete genome 

Laver et al, 
2015 

Kilianski et 
al, 2015 

Hepatite B 
virus Complete genome Sauvage et 

al, 2018 

Plasmodium 
falciparum 

9 genes : 
- Mitochondrial 
apocytochrome B (CYTB) 
- 
Sarcoplasmic/endoplasmic 
reticulum Ca2+-ATPase6 
(PfATPase6). 
- Multidrug resistance 
protein 1 (PfMRP1). 
- Dihydrofolate reductase-
thymidylate synthase 
(PfDHFR). 
- Dihydropteroate 
synthase (PfDHPS) 
-  Translationally 
controlled tumor 
protein (TCTP). 
- Chloroquine resistance 
transporter (PfCRT) 
- Multidrug resistance 
protein 1 (PfMDR1) 
- Kelch protein gene 
(K13) 

Runtuwene 
et al, 2018 

Infuenza 
virus Complete genome Wang et al, 

2015 

Zika virus Complete genome Quick et al, 
2017 

Ebola virus Complete genome Hoenen, 
2016 

4- Application of ONT in cancer research and 
diagnostic: 
Cancer is a heterogeneous disease that results from 
accumulation of mutations and epigenetic modifications 
in somatic cells. In last decade, researches have developed 
new anticancer drugs with a higher precision of molecular 
targeting. The cellular targets are genetically modified in 
cancer cells and are essential for tumor development and 
survival. Oncoprotein or oncogenes targets, which are 
mainly involved in various signaling pathways, are 
primarily products of gene fusions, obtained or functional 
mutations or overexpressed oncogenes (Ke and Shen, 
2017). The use of a targeted therapy is restricted to 
patients whose tumor has a specific gene mutation that 

codes for the target. However, precision medicine aimed 
to identify patients most likely to benefit from treatment 
(Tsimberidou et al, 2014). For this reason, genomic 
sequencing is required nowadays to better manage 
patients health and targets therapies to achieve the best 
outcomes in the management of cancer disease. In this 
context, ONT technonology has been used to detect DNA 
structural variant of tumor suppressor genes 
CDKN2A/p16 and SMAD4/DPC4 in pancreatic cancer. 
Results show that nanopore sequencing can detect large 
deletions, translocations and inversions at dilutions as low 
as 1:100, with as few as 500 reads per sample (Norris et 
al., 2016).  

De Jong et al., 2017 shows that MinION nanopore 
sequencing of long-range PCR amplicons is able to 
resolve the exon structure of whole BRCA1 transcripts. 
The study has identified 20 novels BRCA1 isoforms, 18 
of which contained multiple individual splicing events. 
The study was successful in demonstrating the capability 
of the MinION device to characterize the exon structure 
of whole BRCA1 transcripts and proved that MinION 
technology overcomes limitations of traditional PCR-
based techniques. 

In lung adenocarcinoma, a number of molecular-targeting 
medicines are available, such as gefitinib, erlotinib and 
afatinib for EGFR;34 crizotinib, ceritinib and alec tinib 
for ALK;35  and vandetanib and cabozantini. The drug 
prescription requires molecular characterisation and 
mutation detection. The study of Suzuki et al., 2017 has 
reported the use of MinION to detect various types of 
mutations in cancer-related genes like EGFR, KRAS, 
NRAS and NF1 in lung cancer but regardless of the error-
prone nature of the sequence data of MinION, in the case 
of homozygous mutant alleles, the cancerous mutations 
could be robustly detected. 

The 2016 WHO (world health organisation) 
classifications of central nervous system tumors require 
molecular profiling for final diagnosis. Common genes 
that delineate this classification include IDH, 1p/19q, 
SHH, WNT, TP53, and RELA. To date, only few studies 
has been published using the MinION to support 
molecular diagnosis of central nervous system tumor 
tissue. Despite a small sample size, the study of Patel et 
al., 2018 demonstrated that the MinION could provide 
critical diagnostic information regarding SNPs (single 
nucleotides polymorphism), copy number variations, and 
methylation patterns within a single workday.  
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Table 2: some cancer related genes sequencing by Min 
Ion technology. 

5- Application of ONT for HLA typing and 
immunogenetic clinical research:  

The human genome contains many regions of high and 
low complexity that have relevance to an individual’s 
health. Some of the most complex regions of the genome 
are those that encode the human leukocyte antigen (HLA) 
and KIR (Killer-cell immunoglobulin-like receptors). The 
nano sequencer MinION is a potential device to sequence 
the HLA allele’s frequencies and KIR (killer-cell 
immunoglobulin like receptor) genes analysis (Ma et al., 
2015; Ton et al., 2018). Another study realized by Liu et 
al, 2018 have reported the use ONT for HLA typing to 
assess the immunologic compatibility between organ 
donors and recipients, their study report that the 
platform's high error rate makes it challenging to type 
alleles with accuracy. 

Likewise, Deutekom et al, 2017 have announced that the 
current status and data quality of MinION cannot yet be 
applied for routine HLA typing. 

The application of MinION for sequencing ABO genes, 
revealed that the new sequencer can be regarded as a 
novel platform for high throughput ABO genotyping, 
very suitable in cases where serology is unavailable 
(Matern et al, 2017). This technology has been also 
applied for the studies of polymorphisms in Alzheimer 
related gene and the results showed that the device can 
detect genetic variation but the high rate of error makes 
polymorphism determination so difficult (Brooks et al., 
2016;Ton et al., 2018). 

Furthermore, the ONT long read is a promising 
technology that can be applied for diagnostics of rare 
diseases like with ataxia-pancytopenia syndrome and 
severe immune dysregulation (Boweden, 2019) 

6- CONCLUSION:  
Regarding the speed and the low capital cost, the 

ONT is a promising tool that opens new era for scientific 
research, molecular diagnostic and personalized 
medicine, especially in developing countries where 
access to sequencing technology is so limited. This new 
technology has successful applications within clinical 
microbiology, human genome sequencing, and cancer 
genotyping across multiple specialties. The MinIon 
device is also a new instrument that has the ability to 
advance our understanding of biological pathways and 
disease etiology. 
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