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INTRODUCTION

The study of integral inequalities involving functions of one
or more independent variables Is an important tool in the
study of existence, uniqueness, bounds, stability, invariant
manifolds and other qualitative properties of solutions of
differential equations and integral equations (see : [1-6,
8,12)).

The study of integro-differential inequalities for
functions of two or n variables is very significant and plays
a role in the study of the existence and uniqueness of the
solutions of Wendroff type integro-differential inequalities
and equations as well as the boundedness of the solutions of
the initial value problem of non-linear retarded hyperbolic
partial integro-differential equations for functions of two or
n variables [9-11].

Pachpatte [7] presented some new non-linear integro-
differential inequalities of the Wendroff type for two-
variable functions.

Lemma 1. (See Theorem 1 [7]) Let ®(x,y) and c(x,y) be
non-negative continuous functions defined for x > 0,y >
0, and ®(0,y) = ®(x, 0) = 0 for which the inequality

&,y (x,y) < alx) +b(y)

x y
+0f Ofc(s,t) (0(s,0)

+ @, (s, t)) dsdt,

holds for x>0,y>0, where a(x),b(y) =
0; a’(x),b'(y) = 0 are continuous functions defined for
x 20,y = 0. Then

Gy (x,y) < alx) +b(y) +

X ry [a(0)+b(t)][a(s)+b(0)] s rt

c(t, O')]d‘[dO') dsdt

Our main aim here, motivated by the works of Pachppate
[7]1 , Zhang, H. and Meng [12] , is to stablish some new
non-linear retarded integro-differential inequalities for
functions with tow and n independent variables which are

useful in the analysis of certain classes of partial differential
equations and integro-differential  inequalities. Some
applications of our results are also given

Throughout this paper, we denote RT = [0, oo which is a
subset of R}, (n = 1). All the functions which appear in the
inequalities are assumed to be real valued of n -variables
(n = 1)which are non-negative and continuous. All
integrals are assumed to exist on their domains of
definitions.

We note D = D, D, --- D,,, whereD;, fori = 1,2,---,n.

Il. MAIN RESULTS

In this section, we present some results of non-linear
retarded integro-differential inequalities in two independent
variables.

Theorem 2. Let u(x, ), c(x,y) and a(x,y), D;u(x,y) and
Du(x,y) be non-negative continuous functions for all i =
1,2 defined for x,y € R, and a, 8 € C*(R,,R,) be non-
decreasing functions in each variable, with a(x) = x on
R,, and B(y) = y on R,. Let c(x, y) be non-decreasing in
each variable x,y € R,, and

lim u(x,y) = lim u(x,y) = 0.
X—00 X—00
If

Du(x,y) < c(x,y)
oo (2.1)
+ a(s,t)[u(s,t)
alx) B

+ Du(s, t)]dsdt,
for all x,y € R,, then
Du(x,y)
L o T e (2.2)
<c(x,y) jj a(s,t)exp[J-J’ [a(z,0)]dtd
BW) s Ut

a(x)

Forall x,y € R,.

Proof: Fix any X,Y € R,. Then, forx < Xand y <Y, we
have
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[ee)

Du(ny') S C(Xl Y) + fa(x)
Du(s, t)]dsdt,

Jgy (s, Oluls, t) +
Define a function z(x, y) by

[ee]
[ee]

z(x,y) =c(X,Y) + a(s, t)[uls,t) (2.3)
alo) B
+ Du(s, t)]dsdt,
Then
Jlim z(x,y) = lim z(x,y) = c(X,Y),
And
(2.4)
Du(x,y) < z(x,y).
By differentiating (2.3)
(2.5)
Dz(x,y)
< a(a@), B))[u(ax), (1))
+ Du(a(x), B())]a' ()B' )
By integrating both sides of (2.4)
[ e (2.6)
Du(x,y) < z(s, t)dsdt,
o) B
Now, using (2.4) and (2.6) in (2.5), we get
Dz(x,y) < a(a(x), F()) [2(x,y) +
Lioo Jyeyy 7(s, Dydsdt | @ GIB' (). @7
If we put
v(x,y) =z(x,y) + ; z(s, t)dsdt, (2.8)
o) B
then
Jim z(x,y) = ylljlgo z(x,y) = c(X,Y),
and

Dv(x,y) < Dz(x,y) + z(x,y)a’(x)B'(¥).
using the fact that
Dz(x,y) < a(a(x), B())v(x, y)a' (x)B' ()
from (2.7) form (2.8) we have
Dv(x,y) < [1+alx,y)]v(x,y)a’(x)B' ).

It is easy to estimate v(x,y) by

v(x,y) < cX,Y) f f [1+a(s,t)]dsdt. (2.9)
alx) B
By substituting (2.9) in (2.7) and integrating both sides, we

get

36

209 }
<cX,Y) f fz: ) a(s,t)exp If foo[a(‘r, a)]d‘rda,l dsdt.
a(x) Y s t

Since X and Y are arbitraries and by substituting the value
of z(x,y) in (2.4), we obtain the inequality (2.2).

Remark 1 If we put o =0,a(x) =x,8() =y, and
c(x,y) = ¢;(x) + c,(v) in Theorem 2 we obtain Theorem
1in [7].

Corollary 3. Let u(x,y), c(x,y) and a(x, y), D;u(x,y) and
Du(x,y) be non-negative continuous functions for all i =
1,2 defined for x,y € R, and a, 8 € C*(R,,R,) be non-
decreasing functions in each variable, with a(x) = x on
R,, and B(y) = y on R,. Let c¢(x, y) be non-decreasing in
each variable x,y € R,, and

lim u(x,y) = lim u(x,y) =0,
X—00 X—00

If

Du(x,y) <c(x,y) + M [u(x, y) +

o (2.10)
fa(x) fﬁ(y) a(s, )[u(s,t) + Du(s, t)]dsdt ],
for all x,y € R,, where M > 0 is constant, then
Du(x,y) < c(x,y)exp (M (2.11)

) B
+ Ma(s,t) + a(s, t)]dsdt,

forall x,y € R,.

Proof: Fixany X,Y € R,. Then, forx < X andy <Y, then
from (2.10)

Du(x,y) <cX,Y)+ M [u(x,y) +
f:zx) f;()y) a(s,t)[u(s,t) + Du(s, t)]dsdt ],
Define a function z(x, y) by

z(x,y) =cX,Y)+ M [u(x, y) +

o (2.12)
fa(x) fﬁ(y) a(s, t)[u(s,t) + Du(s, t)]dsdt ],
Then
lim z(x,y) = lim z(x,y) = c¢(X,Y)
X—00 X—00
And
Du(x,y) < z(x,y). (2.13)

By differentiating (2.12) and using (2.13), we have

Dz(x,y) < z(x,y) [M + Ma(a(x),[)’(y))
+ala(), By))]a’ B »),

Therefore

[ee]

z(x,y) < c(X,Y)exp
a(s, t)]dsdt,

Jpipy[M + Mas, 0) +

a(x)
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Since X and Y are arbitraries and by substituting the value
of z(x,y) in (2.13), we obtain the inequality (2.11).

Remark 2. If we put o = 0,a(x) = x,B(y) =y, and
c(x,y) = ¢1(x) + c;(y) in corollary 3 we obtain theorem
2in [8].

Corollary 4. Let u(x,y), c(x,y) and a(x, y), D;u(x,y) and
Du(x,y) be non-negative continuous functions for all i =
1,2 defined for x,y € R, and a, 8 € C*(R,,R,) be non-
decreasing functions in each variable, with a(x) = x on
R,, and B(y) = y on R,. Let c(x, y) be non-decreasing in
each variable x,y € R, and

lim u(x,y) = lim u(x,y) =0,
X—00 X—00

If

Du(x,y) < c(x,y) + M [u(x,y) +

[%) I als,Du(s, tydsdt |,

for all x,y € R,, where M > 0 is constant, then

[ee]
[ee]

Mla(s,t) + 1]dsdt,
B

Du(x,y) < c(x,y)exp

a(x)

forall x,y € R,.
Proof : The proof of this Corollary follows the same
arguments as in Corollary 3.

Remark 3. If we put o =0,a(x) = x,8(y) =y, and
c(x,y) = ¢;(x) + ¢, (y) in Corollary 4 we obtain the result
in[12].

Theorem 5. Let u(x,y),c(x,y) and a(x,y),b(x,y) be
non-negative continuous functions defined for x,y € R,
and a, § € C*(R,,R,) be non-decreasing functions in each
variable, with a(x) = x on R,, and B(y) = y on R,. Let
¢(x,y) be non-decreasing in each variable x,y € R,. If

ulx,y) <clx,y) +
fa(x) fﬁ(y) a(s, u(s, t)dsdt

f;zx) fﬁoc(’y)a(s, t)[f:o f:o b(t,0)u(z, 0)drdo |dsc

(2.14)

For all x,y € R,, then

u(x,y) < c(x,y)exp [y, fo, als, tdsdt
Lo Jpp @GO [T bz, 0)drdo Jdsdt, (1)

Forall x,y € R,.

Proof: Since c¢(x,y) is non-negative and non-decreasing,
from (2.14) we have
u(s,t

c(x,y) =1+ fa(x) fﬁ(y) a(s, t) C(S_,t) dsdt +

© © o 00 u(z,0)
fa(x) fﬁ(y) a(s, t) [fs ft b(T, 0') t.0) deO'] dsd

c(T

37

Define a function z(x,y) by the right side of the last
inequality. Then z(x,y) = 0,

LX) ey,

JYim 20,y) = lim 200 = 150y

and

Dz(x,y) < z(x,y) [a(x, y) +

a(x,y) [ f;gy)b(s,t)dsdt]a’(x)ﬁ’(y).

a(x)
ie

Dz(x,y).z(x,y) D,z(x,y)D,z(x,y)

z%(x,y) z%(x,y)
< la(x,y) +alx,y) f b(s,t)dsdt |a'(x)B'(¥).
alx) B
Thus
Dlz(x!y)
2 [ Gy | = [a(x’ )+ (2.16)

a6 Y) Sy [y s Ddsdt | GOB'(

By keeping y fixed, setting x = s, and integrating from
a(x) to o in (2.16), and again by keeping x fixed, setting
y =t, and integrating from B(y) to oo in the resulting
inequality, we have

[ee]

ch. y)f c(x, y)ex£ f‘;,(") Jpyy als, tdsdt +
fa(x) fﬁ(y) a(s,t) [fs ft b(t,0)dtdo ]dsdt .

Finally, since

u(x,y)
Gy =257

We obtain the inequality (2.15).
Remark 4.

1. If we put © =0,a(x) =x,8%) =y, and c(x,y) =
¢1(x) + ¢;(y¥) in theorem 5 we obtain theorem 3 |7].

2. In the particular case when b(x,y) = 0, then the bound
obtained in [8] reduces to :

(oo}
[oe]

u(x,y) < c(x,y)exp a(s,t)dsdt .
alx) B

Theorem 6. Let u(x,y), clx,y) and

a(x,y),b(x,y), f(x,y), Dju(x,y) and Du(x,y) be non-

negative continuous functions for all i = 1,2 defined for

(2.17)

t,x,yeR, and ap€C'(R; R;) be non-decreasing

functions in each variable, with a(x) = x on R,, and

B(y) =yonR,.
And
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lim u(x,y) = lim u(x,y) =0
X—00 X—00

Let K (u(x, y)) be a real-valued, positive, continuous,
strictly  non-decreasing,  sub-additive, and  sub-
multiplicative function for u(x,y) = 0, and H (u(x, y)) be
a real-valued, positive, continuous and non-decrasing
function defined for x,y € R,. Assume that c(x,y) and
f(x,y) are non-decreasing in each of the variables x,y €
R,. If

Du(x,y) <c(x,y) +
FOH (S Sy als, OK (uls, ©))dsde ) +

e[ (2.18)
fa(x) fg(y) b(s,t)Du(s, t)dsdt,

forall x,y € R,, then

u(x,y) < cCoy) + e yH (67 [6() +
Loy Sy @5, DK (F(s,0p(s,0))dsdt | ) p(x, y

(2.19)

for all x,y € R,, where
p(x,y) 220
L e L o 2.20

= ff exp Uf b(r,a)drdaldsdt.

AR ICON PO

§= f fooa(s, K (c(s, O)p(s, t))dsdt . (221)
0 0
e = [ @)
K(H(s))

r
Where G~ is the inverse function of G, and

GE) + Jyony Jyery a(s, OK (F (s, p (s, ) dsdt €
dom(G™1)

forall x,y € R,.

Proof : Define a function z(x, y) by

z(x,y) = c(x,y) +
flx,yH (f:zx) fl;x()y) a(s, K (u(s, t))dsde ), (2.23)

then from (2.18), we have

Du(x,y)

<z(x,y)+ b(s,t)Du(s, t)dsdt .
alx) B

(2.24)

Clearly, z(x,y) is a positive, continuous, and decreasing
function in each of the variables x,y € R,. Using (2.17)
from Theorem 5 in (2.24), we get

38

[oe]
[oe]

b(s,t)dsdt.
) B)

Du(x,y) < z(x,y)exp (2.25)

a(x

By integration, first with respect to x from x to oo, and then
with respect to y from y to ooin the last inequality, we obtain

u(x,y) < z(x, y)p(x, y). (2.26)

where p(x, y) is defined in (2.20). From (2.23)we have

z(x,y) = c(x,y) + f(x, IH(v(x,¥)), (2.27)
where
v(x,y) = i a(s, t)K(u(s, t))dsdt. (2.28)

alx) B
Now, using (2.27) in (2.26)we get

u(x,y) < [c(e,y) + f, HC ) |plx,y) (2.29)

From (2.28) and (2.29) and since K is a sub-additive and
sub-multiplicative function, we obtain

v(x,y) < f:()x) f;y)a(s, t)K([c(s, t) +
f(s, t)H(v(s, t))]p(s, t)) dsdt <
f;()x) f;()y) a(s, t)K(c(s, 0)p(s, t))dsde +

f;()x) f;()y) a(s, )K (f(s, t)H(v(s, t))p(s, t)) dsdt .
Therefore

v(x,y) < fooo fooo a(s, t)K(c(s, O)p(s, t))dsdt +

Liro Joery als, K (£ (s, p(s, 0K (H(v(s,0))) dsdt

Define a function ®(x, y) by

D(x,y) = fooo foooa(s, K (c(s,O)p(s,t))dsdt +
f:zx) f;y) a(s, OK(f (s, Op(s, ))K (H(v(s, t))) dsdt .

(2.30)
Then

lim ®(x,y) = lim ®(x,y)
x->00 y-oo (2.31)

= J- J-ooa(s,t)K(c(s,t)p(s, t))dsdt =¢.
0
0

and

v(x,y) < ®(x,y). (2.32)

Clearly, ®(x, y) is a positive and decreasing function in y,

then

D1‘D(x&)3’)

- fﬂ ( )a(a(x), DK (F (), Op(a), H)K (H(v(a(),1)) dsdt o' (x)
y

>-K (H(Cb(x,y))) L( )a(a(x),t)K(f(a(x),t)p(a(x),t))dsdt a'(x).
y

1.e
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D;®(x,y)
K (H(CD(x, y)))
> —f a(a(x), t)K(f(a(x), t)p(a(x),t))dsd
B

(2.33)

From (2.22) we have

D,G(®(x,y))
D]_CD(X, J/)

Tk (H((D(x,y)))
> —f a(a(x), t)K(f(a(x), t)p(a(x),t))dsdt
B

(2.34

Now, by setting x = s and integrating from x to oo in
(2.34), and using (2.31) we get

®(x,y) <G [6(©) +

N (2.35)
fa(x) fﬁ(y) a(s, K (f(s,)p(s, t))dsdt ],

Finally, by substituting (2.27), (2.32) and (2.25), (2.35)
we obtain the inequality (2.19).

Remark 5.

1. From the inequalities (2.29), (2.32) and (2.35) in the
proof of Theorem 6 we can find this inequality

u(x,y) < c(x,y) + @ y)H (67 [6(9) +
f;()x) f;()y) a(s, )K(f (s, )p(s, t))dsdt D p(x,y).

2. If we put 0 =0,a(x) =x,8(y) =y, and c(x,y) =
1 (x) + ¢, (), f(x,y) = 1,H(x) = K(x) = x in
theorem 6 we obtain Theorem 1 [12].

Corollary 7. Let ulx,y),clx,y) and
a(x,y),b(x,y),Dyu(x,y) and Du(x,y) be non-negative
continuous functions for all i = 1,2 defined for x,y € R,
and a, § € C1(R,,R,) be non-decreasing functions in each
variable, with a(x) = x on R,, and S(y) = y on R,.

And
lim u(x,y) = lim u(x,y) =0
X—00 X—00

Let K (u(x, y)) be a real-valued, positive, continuous,
strictly  non-decreasing,  sub-additive, and  sub-
multiplicative function for wu(x,y) = 0. Assume that
¢(x,y) is non-decreasing in each of the variables x,y € R,.
If

Du(x,y)
<c(x,y) + a(s, K (u(s, t))dsdt  (2.36)
alx) B
+ b(s,t)Du(s, t)dsdt,

) B

a(x

forall x,y € R,, then

u(x,y) < cGoy) +H (T[T +

© oo (2.37)
fa(x) fg(y) a(S, t)K(p(s, t))dsdt D p(x, y),

for all x,y € R,, where p(x,y) and ¢ are defined in
theorem 6.

[oe]

ds
) = f KG)

Where T~ ! is the inverse function of G, and

(oo}

(oo}

T(¢) + J-f a(s,t)T(p(s,t))dsdt € dom(T™1)

alx) B

forall x,y € R,.
Proof : The proof of this Corollary follows the same
arguments as in Theorem 6.

Remark 6.

1. If we put f(x,y) = 1,H(x) = x in theorem 6 then we
obtain the result in Corollary 7.

2. If we put © =0,a(x) =x,8(y) =y, and c(x,y) =
c1(x) + c,(¥),alx,y) = b(x,y),K(x) = x in corollary 7
we obtain theorem 1 in [7].

Corollary 8. Let u(x,y), a(x,y),b(x,y), D;yu(x,y) and
Du(x,y) be non-negative continuous functions for all i =
1,2 defined for x,y € R, and a, 8 € C*(R,,R,) be non-
decreasing functions in each variable, with a(x) = x on
R,,and B(y) =y on R,.

And
lim u(x,y) = lim u(x,y) = 0.
X—00 X—00

If

[oe]

Du(x,y) <M+ fa(x) f;zy) a(s,u(s, t)dsdt +

N (2.38)
fa(x) fB(J/) b(S, t)Du(S, t)det ,

for all x,y € R,, where M >0 is constant, then the
following conclusions are true:

Du(x,y) < M(1+
fooo fooo a(s,t)p(s,t)dsdt exp [

a(x)

[ee]

f[:(()y) a(s, t)p(S, t)dsdt )

exp J- b(s,t)dsdt,
B

a(x)

u(x,y) <M (1 +
fom foma(s, t)p(s, t)dsdt exp f:zx) fﬁozy)a(s, t)p(s, t)dsdt)p(x, y)

For all x,y € R,, where p(x,y) and ¢ are defined in
theorem 6.
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Proof : By setting K(x) = x and c(x,y) = M in Corollary
7, we obtain the results of this Corollary.

Corollary 9. Let u(x, y), a(x,y), b(x,y), D;u(x,y) and
Du(x,y) be non-negative continuous functions for all i =
1,2 defined for x,y € R, and a, f € C*(R,, R,) be non-
decreasing functions in each variable, with a(x) = x on
R,,and B(y) = y on R,.

And
lim u(x,y) = lim u(x,y) =0
X—00 X—00

Let K (u(x, y)) be a real-valued, positive, continuous,
strictly  non-decreasing,  sub-additive, and  sub-
multiplicative function for u(x,y) = 0. If

Du(x,y) < c1(x) + c;(y)
+ f)fﬁ(y)a(s, K (u(s, t))dsde

a(x

[ee]
[ee]

+ f b(s,t)Du(s, t)dsdt,
alo) B

For all x,y €R,, where c¢;(x),c;(y)>0, and
c'1(x),c',(y) > 0 are continuous functions defined for
x>0,y =0 then

Du(x,y) < c;(x) + c,(y)

[ee)
[ee)

+| T T + ffﬁ( )a(s,t)K(p(s,t))dsdt
y

a(x)

fee)
fee)

exp ff b(s,t)dsdt,
alx) B

For all x,y € R,, where

§= f fo ) a(s, K ((c1 (s) + 2 (0)p(s, t)) dsdt
0

And p(x,y) and T are defined in corollary 7.

Proof : By setting c(x,y) = ¢;(x) + c,(y) in Corollary 7
and using the same arguments in theorem 6, we obtain the
results of this Corollary.

lll. Retarded Non-Linear Integro-Differential
Inequalities in n Independent Variables

In this section, we present some results of non-linear
retarded integro-differential inequalities in n independent
variables.

In what follows, for

X = (xlleI ---xn)rt = (tll tZI tn):&) = (00: 0, ___’00),

We denote :

40

For x,t € R%}, we shall write t < x whenever t; < x;,i =
1,2,...,n. Forany X = (X;,X,, ... X;,) € R}, we shall write
x < X whenever x; < X;,i =1,2,...,n

a@(x) = (“1(351)’ ay(x,), ---an(xn)) € Cl(Rl RZ).

We denote @&(x) =x whenever a;(x;)=x; fori=
1,2,..,n

f dt = J. J. e J. dtn e dtzdtl.
a a1(x1)  azx(x2)  anlxn)

Our main results are given in the following theorems.

Theorem 10. Let u(x),a(x) and c(x) be non-negative
continuous functions defined for x € R} and & €
C1(R%, R%) be non-decreasing functions in each variable,
with @&(x) = x on R}. Assume that c(x) is non-decreasing
in each variable x € R%. if

u(x) < c(x) + f a(®u(t)dt, 3B.1)

a(x)
for x € R%, then

u(x) < c(x)exp f a(t)dt. (3.2)

@(x)
Proof : Since c(x) is non-negative and non-decreasing,
from (3.1) we have

u()
()~

Define a function z(x) by

<1+ f (t)ﬁdt

z(x) =1+ fa(t)%dt

a(x)

then
u(x)

z(x) > O’Jil-rgoz(xl’ woxp) =1,i=12, ...,n,m

< z(x)
{Dz(x) < a(x)z(x)& (x); if nis even
Dz(x) = —a(x)z(x)& (x);if nis odd
e
z(x)Dz(x) Dnz(x)(D1 ...Dn_lz(x))
z2(x) B z2(x)
Therefore
( Dy ...D,,_1z(x)
D"< 2@

{ Dy ...Dy,_1z(x) » ) )
an <T) > —a(x)d@' (x);if nis od

< a(x)a'(x).

) <a()a'(x);if nisever
(3.3)
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By integrating (3.3) with respect to x,, from x,, to o, we have

D;..D,_1z(x ‘
( ( e )> < J- a(xy, oy Xn_1, t)dta @y (x1) o 1" (Xn_1) s if M is even

z%(x)
{ an(xn)
D 2(x) [ , , .
|k ( 1- ZZYEx; ) >— f a(xq, oo Xnoq, tp)dtaay (1) oty y' (0p_q); if nis odd
an(xn)
thus
I(Dl Dy_,z(x) > Dy ...Dy_5z(x) S if nis even
{ z(x) B ETE)! ’
Dy ..D,_1z(x) Dy ...D,_»z(x) ’
< i
Z(x) <D, —z(x) ;if nisodd
hence

a(xq, o, Xp_q, tp)dtn @y (xq) @y (xp_1) ; if nis even

(_ (D1 ...Dn_zz(x)> -

z(x)
an(xn)
| Dy ...Dp_5z(x) , , o
—D,_4 T2 > — a(xy, o, Xp_q, t)dtaay (1) o @y (1) if nis odd
an(xn)

By integrating the last inequality with respect to x,,_; from x,_; to o, we have

[ee]

(Dl wDy_5z(x) , , o
— =< a(xq, oy Xp_gy tyq, tp)dtpdt, 10y (x1) v @y (xn_3) ; if nis even

z(x)
an—1(xn-1) an(xn)
D, ..D,_,z(x) ) S
lT > — a(xq, o, Xp_gy tye1, tp)dt,dt,_qa, () .y (_5) ;if nis odd
k an-1(xn-1)  anlxn)

By continuing this process, we get

((Diz(0) _ N
— < f f a(xy, ty, .., tpy)dty, ..dty,a (x1);if nis even

Z(x) (3 4)
az(xz) an(xn) *

D Z(X) ! . .
L ;(x) == f f a(xy, ty, ..., ty)dty ..dtya, ' (x1) s if nis odd

az(xz2)  an(xn)

By integrating (3.4) with respect to x; from x; to o, we ) ]
lim u(xy, x5, ., X)) =0,Vi=12,...,n
oo

have i
z(x) <exp | a(t)dt. Let @ € C'(R%, R}) be non-decreasing functions in each
i) variable, with @(x) = x on R’}. Assume that c(x) is non-

decreasing in each variable x € R7. if
Finally, since % < z(x) we obtain the inequality (3.2). g & *

Remark 7. In the particular case when n = 2, x € R%, Du(x) < c(x) + J- a(®)[u(t) + bu(t)ldt, (3.5)
(00,0) = (0,0), a;(x1) = x1, @y (x3) = xp,and c(x) = n a(0)

¢, (x;) + ¢, (x;) then theorem 10 reduces to lemma 1 in for x € R, then

[12].

Theorem 11. Let u(x), c(x), a(x), D;u(x) and Du(x) be
non-negative continuous functions for all i = 1,2, ...,n
defined for x € R7,
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(o]

z(x) + f Z(t)dt‘ a'(x);if n

@(x)

ux) < c(x)

[€s) [€s) (
1+ f a(t)expf(l (3.6) Dz(x) < a(x)
a(x) t

(3.11)

+a(r))dr dt‘. Dz(x) = —a(x) |z(x) + f Z(t)dt‘ @' (x);if
Proof: Fixe any X € R%}. Then, for x < X and from (3.5), "
we have ) If we put
Du(x) < c(X) + J- a(®)[u(t) + Du(t)]dt, v(x) = z(x) + Z(t)dt, (3.12)
) alo
Define a function z(x) by Then
& lim v(xq,...,x,) =cX),i =12, ..,n,
z(x) = c(X) + f a@®u®) +bu®)ld,  (B.7) e
ax) And
Then {Dv(x) = Dz(x) + z(x)&' (x); if nis even
lim z(xy, ..,x,) = c(X),i =12,...,n, Dv(x) = Dz(x) — z(x)@ (x); if nis odd
l Using the fact that
Du(x) < z(x), (3.8)
{Dz(x) <a(x)v(x)a'(x);if nis even
By differentiating (3.8) Dz(x) = —a(x)v(x)a&'(x);if nis odd’
Dz(x) < a(@)[u(x) + Du(x)]@ (x); if n is eve From (3.11) and z(x) < v(x) from (3.12), we have
{Dz(x) > —a(x)[ulx) + Du(x)]@'(x); if nis oc (3.9)

{Dv(x) < [1+4+ax)]v()a’ (x);if nis even

By integrating both sides of (3.8) Dv(x) = —[1+ a(x)]v(x)a@'(x);if nis odd’

[oe]

It is easy to estimate v(x) by following the same arguments

u(x) < ] z(t)dt, (3.10) as in the proof of Theorem 10 as follows
a(x) &
(3.13)
Now, using (3.8) and (3.10) in (3.9) we get v(x) < c(X)exp f (1+a(@®)dt|.
@(x)
By substituting (3.13) in, (3.11) we get
Dz(x) < a(x)c(X)exp f (1 + a(t))dt a'(x);if nis even
oo (3.14)

f (1+ a(t))dt] @' (x);if nis odd

a(x)

Dz(x) = —a(x)c(X)exp

lim D; ...Dyp_12(Xq, e, Xpeq, X)) = 0.

xn—>00

By integrating (3.14) to x,, from Xx,, to o , we have
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—D; ...D,,_1z(x) < c(X)

an(xn)

an(xn)

By continuing this process, we obtain

(oo} [oe]

|{—Dlz(x) <cX)

az(x2)  an(xn)

i D,z(x) = —c(X) a(xy, ty, ..., ty)exp
| [ ]

az(x2)  anlxn)

By integrating the last inequality with respect to x; from
X; to oo, we have

[ee)

(o]

z(x) < c(X)exp f a(t)exp f(l +a(r))dr dt.
a(x) T
Since X is arbitrary, by substituting the value of z(x) in
(3.8), we obtain the inequality (3.6).

Remark 8. In the particular case when n =2, x € R2,
(00,0) = (0,0), a; (x1) = x1, a(x,) = xp,and c(x) =
¢1(x1) + ¢3(x;) then theorem 11 reduces to Theorem 1 in

(8]

Corollary 12. Let u(x), c(x), a(x), D;u(x) and Du(x) be
non-negative continuous functions for all i =1,2,...,n
defined for x € R7,

lim u(xy, x5, ., Xp) =0,Vi=12,..,n.

xj—00
Let @ € C*(R%, R%) be non-decreasing functions in each
variable, with @(x) = x on R%}. Assume that c(x) is non-
decreasing in each variable x € R7}. if

Du(x) < c(x) + M [u(t) + [, a(®)[u() +
Du(t)]at| (3.15),

for x € RY, then

(o)

Du(x) < c(x)exp fa(x)[M + a(t) + Ma(t)] dt.

(3.16)

Proof : Fixe any X € R%. Then, for x < X and from
(3.15), we have

[oe]

j a(®)[u(t) + Du(t)]dt|,

a(x)

Du(x) <c(X)+ M |u(t) +

—D; ...Dy_1z(x) = —c(X) J- a(Xqy, ) Xp_1,tn) €XD
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a(xy, o, Xp_1,ty) €XD f(l + a(r))d‘c
T

dtpa;' (1) . ap_1' (q_q); if nis even

(o]

J-(l + a(r))dr

T

dtpay' (1) v @p_q' (Xq_1);if nis odd

(o]

a(xy, ty, ..., ty)exp J-(l +a(r))dr|dt, ...dtya, (x,) ; if nis even

)

T
f(l +a(r))dr|dt, ...dtyay' (x,) ; if nis odd
T

Define a function z(x) by

2(x) = c(X) + M [u(®) + [, a(®)[ut) +

(3.17)
Du(t)]dt],
then
lim z(xq, ..., x,) = c(X),i =1,2,...,n,
Xxj—00
Du(x) < z(x), (3.18)

By differentiating (3.8)

{Dz(x) < M[a(x) + Du(x)][u(x) + Du(x)]@'(x); if nis even
Dz(x) = —M[a(x) + Du(x)][u(x) + Du(x)]@’(x); if nis odd’

Using (3.18) and the fact that Ma(x) < z(x), we have

{Dz(x) < [Ma(x) + a(x) + M]z(x)@' (x);if nis even
Dz(x) = —[Ma(x) + a(x) + M]z(x)&'(x);if nis odd
Therefore

[ee]

J- [M + a(t) + Ma(t)] dt.

@(x)

z(x) < c(X)exp

Since X is arbitrary, by substituting the value of z(x) in
(3.18) we obtain the inequality (3.16).

Remark 9. In the particular case when n =2, x € R3,
(00,0) = (0,0), a;(x1) = xy, ay(x,) = x;,and c(x) =
¢1(x1) + ¢, (x;) then corollary 12 reduces to theorem 2 in

[7].

Theorem 13. Let u(x), c(x), a(x), b(x), f(x), D;u(x) and
Du(x) be non-negative continuous functions for all i =
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1,2, ...,n defined for x € R%, and & € C*(R?, R%}) be non-
decreasing functions in each variable, with @(x) = x on
RY%.

lim u(x;, x5, ..., x,) =0,Vi=1,2,...,n.

Xj—00

Let K (u(x)) be a real-valued, positive, continuous, strictly
non-decreasing, sub-additive, and sub-multiplicative
function for u(x) >0, and H (u(x)) be a real-valued,
positive, continuous and non-decrasing function defined for
x € R}. Assume that c(x) and f(x) are non-decreasing
functions in each of the variables x € RY}. If

Du(x) < c(x) + f(x)H (f;()x) a(t)K(u(t))dt) +
Joee, b®Du(t)AL,

for all x € R7%, then

Du(x) < c(x) + f(X)H (G-1 [G(f) +

Joroy a®K(F(Op(®))dt]) exp [, b()dt, (320
forall x € RY, where
p(x) = ( exp f b(t)dr |dt. (3.21)
e '
&= fooa(t)K(c(t)p(t))dt. (3.22)
0
o= [ s @29
Where " is the inverse function of G, and
G+ f a@®K(f(©Op(t))dt € dom(G™1)
for all x € Rz.a N
Proof : Define a function z(x) by
2(x) = c(x) + fF(x)H f a@®K(u@)dt |, (3:24)
then from (3.19), we havea:)
Du(x) < z(x) + f b(t)Du(t)dt, (3.25)

a(x)

Clearly, z(x) is a positive, continuous, and non-decreasing
function in each of the variables x € R%}. Using Theorem
10 in (3.25), we get

(o]

f b(t)dt |.
@(x)
By integrating (3.26) with respect to x from x to &, we
obtain

Du(x) < z(x)exp (3.26)

u(x) < 2P (), (3.27)

where p(x) is defined in (3.21). From (3.24) we have

(3.28)
z(x) = c(x) + f(D)H(v(x)),
(3_1(}Yhere 5
v(x) = f a®K (u(t))dt, (3.29)
@(x)
Now, using (3.28) in (3.27) we get
u(x) < [c(x) + fFEH(v(x))]p(x), (3.30)

From (3.29) and (3.30) and since K is a sub-additive and
sub-multiplicative function, we obtain

IA

v(x,y) < [, aOK ([c(®) + FOHO)]p)) dt
Jatw @K (c@®p(0))dt +
Jotey @K (FOHEO)P®) dt.

Therefore -
v(x,y) < Js a@®K(c®p®)dt +
Jatey @K (FOH©O)p®) dt.
Define a function ®(x) by

&

d>~(x,y) =J5 a@®K(c®p@®))dt +
Jeeoy aOK(f(OPO)K (H(v (D)) dt.

Then

(3.31)

[oe]

xll_I;l’(ln d(x) = f a(t)K(c(t)p(t))dt =¢.

0

(3.32)

And

v(x) < P(x).

Clearly, ®(x) is a positive and non-decreasing function in each variable x,, x5, ..., X,,, then

[ee]

D, ®(x) = — f f

az(xz2)  an(xn)

hence

r a(al (xl)l tz, R tn)K(f(al(xl)! t2’ R tn)p(al (xl)' t2! R tn))
K (H(v(al(xl), t,, ...,tn))) dt, ...dt,a'y (x,)

’
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D, ®(x) = —
az(x2)  anlxpn)
D,®(x) = —K (H(cb(x))) f

az(x2)

[oe]

an(xn)

1.e

[oe]

r a(al (xl)v t2v R tn)K(f(al (xl)! t2! R tn)p(al (xl)! t2! R tn))
K (H(CD(x1, t,, ...,tn))) dt, ...dt,a'y(x;)

a(a; (%), ta, -, tK (f (@1 (1), ta, -, t)P(1 (x1), Ey e, £0))

dt, ...dt,a' (%)

D@ (x) 3 a(ay (x1), tgy oo, LK (f (@1 (1), tay o, £)D(@1 (1), Ep) vy 8))
K (H(Cb(x))) wn)  anlen) dty ..dtpa’; (x;) (3.33)
From (3.23) we have
D@ (x)
DiG(e(x)) = —F— . 3.34
K(H(cb(x))) (3.34)
ch(q)(x)) 2 _ a(al(xl)r tZr ey tn)K(f(al(xl)x t2,1 ey tn)p(al(xl)x t21 ey tn)) (335)
dt, ...dt,a';(x,)
az(x2) an(xn)
Now, by setting x; =t and integrating from x; to oo in Du(x) < (o) + [Z _a(OK (u(t))dt +
(3.35), and using (3.31) we get 0~0( ) (x) f“(x) Ok (u®) (3.38)
Js o PODu(®)de,

P0) < GG + fyg alOK (£ (OP()) dt (3.36)

Finally, by substituting (3.28), (3.32) and (3.36), (3.34)
we obtain the inequality (3.20).

Remark 10.
From the inequalities (3.30) and (3.36) in the proof of
theorem 13, we can find this inequality

u(x) < c(x) + fOOH (G—l [G(f) +

s (3.37)

Joooy @K (F©)p())dt]) p().
If we put n=2, x €R2, (00,0)=(0,0),a,(x;)=
x1, a2 (%2) = x3,and  c(x) = c1(x1) + e (x2)  f(x) =
1,H(x) = K(x) = x, and a(x) = b(x) then Theorem 13
reduces to Theorem 1 in [7]

Corollary 14. Let u(x),c(x),a(x),b(x), D;u(x) and
Du(x) be non-negative continuous functions for all i =
1,2, ...,n defined for x € R%, and @ € C*(R%, R%) be non-
decreasing functions in each variable, with @&(x) = x on
R7.

lim u(xy, x5, ..., %,) =0,Vi =12, ...,n.

LetK (u(x)) be a real-valued, positive, continuous, strictly
non-decreasing, sub-additive, and sub-multiplicative
function for u(x) =0, and H (u(x)) be a real-valued,
positive, continuous and non-decrasing function defined for
x € R%. Assume that c¢(x) is non-decreasing function in
each of the variables x € RY}. If

45

for all x € RY, then
Du() < c(o) + (T [1() +
Jo aOK (p(0)dt|) exp [, b,

for x € RY, where where p(t) and ¢ are defined in
theorem 13, and

r ds
o) = | K@)

y
Where T~ ! is the inverse function of G, and
&

ro+ |

a(x)

a@®K (p())dt € dom(T™1)

for x € R%.

Proof: The proof of this Corollary follows the same
arguments as in Theorem 13.

Remark 11. If we put H(x) = x and f(x) = 1in
Theorem 13, then we obtain the result in corollary 14.

Corollary 15. Let u(x), a(x), b(x), D;u(x) and Du(x) be
non-negative continuous functions foralli = 1,2, ...,n
defined for x € R}, and @ € C1(R%, R%) be non-
decreasing functions in each variable, with @(x) = x on
R%.

lim u(xqy, x5, .., Xp) =0,Vi=12,..,n.

If
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(o]

(o]

f b(t)Du(t)dt,

@(x)

Du(x) <M + f a(®u(t)dt +

@(x)

for all x € R}, where M > 0 is constant, then the
following conclusion are true:
Du(x) <M (1 +
J, a@®pt)dt exp fa(x) a(t)p(t)dt) exp fa(x) b(t)dt,

ulx) <M 1+J-a(t)p(t)dtexp J-a(t)p(t)dt p(x)
0 @(x)

for x € R}, where
p(x) =

a(x)

expf b(t)dr |dt.
t

Proof: By setting K(x) = x and c¢(x) = Min Corollary 14,
we obtain the results of this Corollary.

Corollary 16. Let u(x), a(x), b(x), D;u(x) and Du(x) be
non-negative continuous functions for all i =1,2,...,n
defined for x € R?, and & € C'(R% R%}) be non-
decreasing functions in each variable, with @(x) = x on
R%.

xli_r)rgou(xl,xz, v Xp) =0,Vi=1.2,..,n.
LetK (u(x)) be a real-valued, positive, continuous, strictly

non-decreasing, sub-additive, and sub-multiplicative
function for u(x) = 0. If

Du(x) < T%, ci(x) + f;‘(’x) a(®)K(u(®))dt +
Joro b(ODU(E)dL,

for all x € R}, where ¢;(x;) >0 and c¢';(x;) =0 are
continuous functions for x; > 0 forall i = 1, ..., n then

Du() < By () + (THT@© +
Iy aK (p(®)dt exp [ a(®K (p(t))dt]) exp f57, (),

for x € R, where where p(t) and T are defined in corollary
14, and

§= f a(t)K (p(t)z Ci(ti)) dt.
a(x) i=1
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Proof: By setting c(x) = Xi=; ¢;(x;) in Corollary 14 and
using the same arguments in [ ] and Theorem 13, we obtain
the result of this Corollary.
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