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Abstract 

  
 In this work, we show that a very large class of matroid groups possesses the basis 

property. Moreover, we show that this class behaves like vector spaces in terms of basis. 
Applications include new proofs for the characterization of finite matroid groups. Moreover, 
we show that every group possesses BEP, also possesses the span property and in the 
definition of matroid group, the extension property can be replaced by BEP. The fact that 
BEP always correct in vector spaces, but the situation is different in groups was showed. In 
the end, we show that each base and maximal independent subset are equivalent in any group 
with embedding property. 
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I- INTRODUCTION 
Matroid theory contributes in several fields of sciences 
such as Coding Theory, Electronics and Computer 
Science [1]. The word ”matroid” came first from 
”matrix”, and then it has its own structure. 

Recently the notion of matroid group was introduced by 
several mathematicians. They studied the structure of such 
groups [2], [3]. 

II. PROBLEM STATEMENT AND FUNDAMENTAL 
CONCEPTS 

Definition 1 : [4].A group G is called a group with basis 
property if there exists a basis (minimal generating set) for 
every subgroup H of G and every two bases are 
equivalent. 
A group G is called a group with exchange property, if 

{ }x X x X y∉ ∧ ∈ ∪ , then { }y X x∈ ∪ , 

for all ,x y G∈  and for every subset X G⊆ . 
Definition 2: A generating set X is said to be minimal if 
it has no proper subset which forms a generating set. The 
subset X of a group G is called independent, if for all 

{ }\x X x X x∈ ∧ ∉ . Independent set X is called 

a basis subgroup X . 

Example 1: Let (Z; +) be an additive abelian group, then 
we can write 1 2,3Z = =  even though 2 3∉ and

3 2∉ . Thus Z does not have the basis property. Hence 
free groups do not have the basis property. 

Definition 3: A matroid M is an ordered pair ( ),E Ω
consisting of a finite set E and a nonempty subset Ω  of 
the power set ( )E  such that ; 

( )a If I ∈Ω  and 0I I⊆ then 0I ⊆ Ω . (Hereditary 
Property). 

( )b If 1 2,I I ∈Ω  and  1 21 I I+ = , then  there  exists  

an  element  2 1e I I∈ − satisfying { }1I e∪ ∈Ω  
(Extension Property). 
The elements of Ω are called independent where the 
elements of ( ) \E Ω  are called dependent. Matroid 

basis are defined to be the maximal elements ofΩ . 
The concepts of independence and basis should be 

clarified before we go on. The condition ( )a is satisfied 

for each group G when we assume that the elements of
Ω  are the independent subsets of G . This is obvious 
since if the elements 1,..., rx x are independent in the 
sense that non of them can be written in terms of the 
others, then any subset of { }1,..., rx x is independent.  It 
should be pointed out that, in groups, each base is a 
maximal independent element of Ω , but the converse is 
not true. Here is an examples. 

Example 2: In 4A , the subset ( )( ) ( )( ){ }12 34 , 13 24  is 
independent and maximal, but certainly is not a base. 
Definition 4: A group is satisfying the ”embedding 
property” if each independent subset can be embedded 
in a base. 
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From this definition, one deduces that, base and 
maximal independent subset are equivalent in any group 
with embedding property. 

Definition 5: A group G is said to be matroid if it satisfies 

( )1a  the empedding 

( )1b extension properties 

Example5:  A typical example of such groups is the 
finite elementary Abelian  groups as they can be viewed 
as vector spaces over the finite Galios field ( )GF p . But 

not all groups are matroid, for if we consider 4D , the 

dihedral group 2 4 1 1, ; 1 ,x y x y x yx y− −= = = , 

the { }2,X x y= is independent  but  cannot be 

embedded in any base. 

For non-Abelian case, one may take 3S to see that it is a 
matroid group. 

III. MATROID GROUPS AND BASISPROPERTY 

Remember that we say a group G has the ”span 
property” if for any two bases ,X Y for G then 

X Y=  If in addition, the same thing is true for all 

subgroups ofG , then G  is said to have the ”Basis 
Property”. In other words,G has the basis property if all 
its subgroups have the span property [5], [6]. 

Proposition 1: Matroid groups possess the span property. 

Proof. Let 1 2,B B be two bases of a matroid group, and 

assume that 1 2B B< , so there exists an independent 

subset 2B B⊆ such that 1 1B B= + , and thus there 

exists an element 1x B B∈ −  such that { }1B x∪ is 

independent according to ( )1b . But B1 is a base of the 
group, so it is maximal independent subset. Therefore,

{ }1B x∪ is dependent. This contradicts what we just 
stated. 

Proposition 2: Matroid groups possess the basis property. 

Proof. Let H be a proper subgroup of a matroid group
G . Consider the two bases of H ,

{ } { }1 1,..., , ,...,r lX x x Y y y= = .By ( )1a , both 

bases can be extended to bases forG . This means there 
exist elements is such that{ }1 1,..., , ,...,r kx x s s is a 

base ofG . By Proposition 1, any base of G contains 
exactly r k+ elements. Now, it is clear that

{ }1 1,..., , ,...,l kH y y s s⊆ , and also any element of 

G H− can be expressed in terms of xis and sis , but any

ix can be expressed in terms of iy s ,thus any element 

of G can be written in terms of iy s and is s .Therefore

1 1,..., , ,...,l ky y s s G= .This implies that 

r k l k+ ≤ +  or r l≤ . We may switch X with Y  in the 
above argument  to see that r l≥ . Hence r l= , and G
has the basis property. 

This leads to a notion similar to the dimension in vector 
spaces. 

In matroid groups, the number of elements in any base 
is called the "rank" for the matroid group G , and it is 
denoted by ( )Gδ . 

Proposition 3: For a matroid groupG . If H is a proper 
subgroup ofG , then ( ) ( )H Gδ δ≤ . 

Proof: Let B be a base of H . So, B contains 
independent elements, and by  ( )1a , B can be 

embedded in a base X for G containing B with 
B X< or ( ) ( )H Gδ δ≤ . 

IV. MATROID GROUPS AND BASIS 
EXCHANGEPROPERTY 

Definition 6: A group G is said to have the basis exchange 
property (BEP) if for any two bases 1 2,B B for G , if there 

exists an element 1 2x B B∈ − , then there exists an 

element 2 1y B B∈ −   such  that { }( ) { }1B x y− ∪ is a 

base for  G . 
This special property is always correct in vector 

spaces, but the situation is different in groups. To 
demonstrate this point, let us focus on the following 
example. 

Example 6: In 9S , let ( )( )( )123 456 789a = ,

( )( )( )147 258 369b = ( )( )( )24 37 68c = . The 

calculations show that ( ) ( )( )( )3 16 29 57ac = . 

we consider the group ,G a c= ,and let 

( ) ( )2 3,x ac y ac= = and z yc= . 

We easily find the two bases { }1 ,B ac b= ,

{ }2 , ,B x y z= . Replacing z by ac gives the subset

{ }, ,x y ac which generates only ac G≠ .The subset
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{ }, ,x y b is dependent since ,x y b∈ .Hence G
does not possess the BEP. One notices that G does not 
possess the span property either.  This example is 
revealing, and we state this proposition. 
Proposition 4:If a group G possesses the BEP. Then it 
satisfies the span property. 
Proof: Assume the contrary. That is G has two bases 

1 2,B B with 1 2B B< . Let us choose these two bases 

such that 1 2B B− is the least possible difference. 

Obviously, 2 1B B φ− ≠ , since otherwise 1B  would 

not be maximal. Now, let 2 1x B B∈ − . By BEP, there 

exists 1 2y B B∈ −  such that { }( ) { }2B x y− ∪ is a 

base. But { }( ) { }2 1 2 1B x y B B B− ∪ − < − . This 

contradicts the minimality of 2 1B B− ,and hence leads 

to 1 2B B= . 

Proposition 5: Matroid groups have the BEP. 
Proof: Let 1 2,B B be two bases of a matroid group G . 

Let 1 2x B B∈ − . Proposition 1 shows that 1 2B B=

, and we know  that both { }1B x− and B2 have 
independent elements. Obviously, 

{ }2 1 1B B x= − + , so there exists 

{ }( )2 1y B B x∈ − − such that { }( ) { }1B x y− ∪ is 
independent. By the extension property, it can be 
extended a base. But since { }( ) { }1 1B x y B− ∪ = , 

then { }( ) { }1B x y− ∪ is a base itself. 

In the definition of matroid group, the extension 
property can be replaced by BEP. 
Proposition 6: Let G be a group with the embedding 
property. Then the following properties are equivalent. 

( )i Extension property. 

( )ii Basis exchange property. 

Proof: ( ) ( )i ii⇒ . Let G be satisfying the extension 

property. Since G has the embedding property. So G is 
matroid. According to the previous proposition, G has 
the basis exchange property. 

( ) ( )ii i⇒ Assume that G has the BEP and G dose 
not satisfy the extension property. Thus, there are two 
independent sets 1 2,I I where 2 1 1I I= + and for all

2 1e I I∈ −   the set { }1I e∪ is dependent.  Embedding 

property leads to existence of two bases 1 2,B B such 

that 1 1 2 2,I B I B⊆ ⊆ . Choose 1 2,B B  such that 

( )2 2 1B I B− ∪ is minimal. Notice that 

2 1 2 1I B I I− = − , because ( )2 1 1I I B φ− ∩ = due to 

adding any element of 2 1I I− to 1I would  make the set 

1B dependent. Now ( )2 2 1B I B φ− ∪ = for 

otherwise, one can choose ( )2 2 1x B I B∈ − ∪ and by 

BEP, there exists 1 2y B B∈ − with { }( ) { }1B x y− ∪
is a base. But

{ }( ) { } ( ) ( )2 2 1 2 2 1B x y I B B I B− ∪ − ∪ < − ∪

which contradicts our choice of 2B . So, 

2 1 2 1B B I B− = − and hence 2 1 2 1B B I I− = − . 

Moreover, ( )1 1 2B I B φ− ∪ = for otherwise, there 

will be an element ( )1 1 2x B I B∈ − ∪ , and therefore, 

there exists 2 1y B B∈ −  such that { }( ) { }1B x y− ∪

is a base for G . Now { } { }( ) { }1 1I y B x y∪ ⊆ − ∪ , 

so { }1I y∪ is independent, and since 

2 1 2 1y B B I I∈ − = − we reach a contradiction with 

our assumption. Thus, 1 2 1 2 1 2B B I B I I− = − ⊆ − . 

But 1 2B B=  this means that 1 2 2 1B B B B− = −

and we may deduce that 2 1 1 2I I I I− ≤ − or 2 1I I≤
which is a contradiction. 
From this statement, one may define the matroid group 
to be any finite group that satisfying embedding property 
and the BEP. 

5. THE CHARACTERIZATION OF MATROID 
GROUPS 

A subset X of a finite group G is called 
independent, respectively Frattini-independent, if 
there is no proper subset Y X⊂ such that

X Y= , respectively

( ) ( )X G Y Gφ φ∪ = ∪ . The group G is called 

a matroid group if G  has property B and every 
Frattini-independent subset of G can be extended to 
a minimal generating set of G .Alternatively,G is a 
matroid group if ( )/H G Gφ= is a Frattini-free Β−
group and every independent subset of H can be 
extended to an minimal generating set. The definition 
of a matroid group given here is the one used in [3]. 
We obtain a small variation of the characterization of 
matroid groups in [3]. 

Theorem 1: Let G be a finite group. Then G is a 
Frattini-free Β− group if and only if one of the 
following holds: 
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( )1 G is an elementary abelian p − group for some 
prime p ; 

( )2 G P Q= × , where P is an elementary abelian

p − group and Q is a non- trivial cyclic q −group, for 
distinct primes p q≠ such that Q acts faithfully on P
and the pF Q − module P  is a direct sum of isomorphic 
copies of one simple module. 

Remark1: This means that there are no Frattini-free 
finiteΒ− groups beyond the examples constructed in 
[7]. Indeed, the groups listed in ( )2 of Theorem1.3can 
be concretely realized as semi direct products via 
multiplication in finite fields of characteristic p : the 

simple module in question is of the form ( )pF ζ , the 

additive group of a finite field generated by a kq
throot of unity ζ over pF , with a generator  z   of Q

acting on ( )pF ζ as multiplication byζ . 

Theorem  2 :[3]. Let G be  a finite group  and let 

( )/H G Gφ= .The groupG is a matroid group if and 
only if one of the following holds: 
(1) G is a p − group for some prime p , 

(2) H P Q= × , where d
pP F≅ a n d  Q is 

cyclic of order q , for primes ,p q  such that / 1q p − ,  

and   pQ F ×→  acts on P  via field multiplication. 

Proof: By the Burnside basis  theorem every  finite group 
of  prime-power  order  is a matroid group. From now 
suppose that G does not have prime-power order. 

First suppose that G is a matroid group. Then, by 
Theorem1 and Remark1 , the Frattini quotient H is a 
matroid group of the form H P Q= × , where P  is 
an elementary abelian p −  group and Q  is a non-

trivial cyclic group of order kq , for distinct primes

p q≠ , such that Q F ×→ acts faithfully on dP F≅
via multiplication in a finite field F .Here F is 
obtained from pF by adjoining a primitive kq th  root 

of unity and we set : pr F F =   . We observe that the 

common size of all minimal generating sets of G is 
1d + . 

Being isomorphic to an PF -vector space of 

dimension rd , the subgroup P contains an 
independent subset of size rd . This subset extends to 
a minimal generating set of H . We deduce that 
rd d≤ , thus 1r = . Let z be a generator of Q and 
assume for a contradiction that 2k ≥  . Choose a 

minimal generating set X for P as an pF Q −

module. Then { }qX z∪  is an independent set of size 

1d + that does not generate H and does not extend to 
a minimal generating set of H . This implies that H
is not a matroid group in contradiction to our 
assumptions. Hence, 1k = , i.e., Q  is cyclic of order 

q . From pQ F ×→  we obtain / 1q p − . 

Conversely, suppose that H P Q= × , where d
pP F≅

andQ z=  is cyclic of order q , for primes ,q p such 

that / 1q p − , and pQ F ×→  acts on P via  field 

multiplication. By Theorem 1 the group H has 
property Β and it suffices to show that every 
independent subset of H extends to a minimal 
generating set. Let { }1,..., mX x x H= ⊆ be an 

independent subset of size m .If X P⊆ then, 
regarding P as an pF -vector space, we extend X  

to a minimal generating set of P  and add the 
generator z of Q  to obtain a minimal generating 
set of H . Now suppose that X P⊆ .Since H does 
not contain any element of order pq , we may 

assume without loss of generality that 1x z= . Then

{ }2
2, ,..., mj j

mX z v z v z= where{ }2 ,..., mv v P⊆

is an independent subset of size 1m −  and 2 ,..., mj j
are integers. 
We extend { }2 ,..., mv v to a minimal generating set

{ }2 ,..., dv v of P . Then { }1,...,m dX v v+∪ is a 

minimal generating set of H .  

Using Theorem 1.5 we obtain the following 
consequence. 

Corollary 1: Let G be a finite group. Then G is a 
matroid group if and only if one of the following 
holds: 

( )1 G is a p − group for some prime p , 

( )2 G P Q= × , where P is a p − group,Q is a cyclic

q −group for primes ,q p such that / 1q p − ,

( )/ QQ C P has order q and acts on ( )/P Pφ fixed-
point-freely. 
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