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A LINEAR PROGRAMMING ALGORITHM FOR LEAST-COST SCHEDULING

Abstract
In this research, some concepts of linear programming and critical path method are reviewed to

describe recent modeling structures that have been of great value in analyzing extended planning
horizon project time-cost trade-offs problems.

A simplified representation of a small project and a linear programming model is formulated to
represent this system. Procedures to solve these various problems formulations were cited and the
final solution is obtained using LINDO program. The model developed represents many restrictions
and management considerations of the project. It could be used by construction managers in a
planning stage to explore numerous possible opportunities to the contractor and predict the effect of
a decision on the construction to facilitate a preferred operating policy given different management
objectives.

An implementation using this method is shown to outperform several other techniques and a
large class of test problems. Linear programming show that the algorithm is very promising in
practice on a wide variety of time-cost trade-offs problems. This method is simple, applicable to a
large network, and generates a shorter computational time at low cost, along with an increase in
robustness.
Key words: Linear programming, cost optimization, least cost-scheduling, time-cost trade-off,
project compression, expediting.

Résumé
Dans ce travail de recherche,  quelques concepts de programmation linéaire et de méthodes de

parcours critiques sont examinés en vue de décrire la structure de modèles récents qui se sont
avérés d'une grande valeur pour l'optimisation de la durée et du coût des projets de construction.

Ce travail est illustré par la représentation simplifié d'un projet et un modèle de programmation
linéaire est formulé pour représenter ce système. Les méthodes de résolution de ces différentes
formulations des problèmes sont citées et une solution est obtenue en utilisant le programme
LINDO. Le modèle développé signale un certain nombre de restrictions et des considérations de
gestion du projet. Il peut-être utilisé durant la phase de planification afin d'explorer les nombreuses
opportunités qui s'offrent au constructeur dans ses prises de décisions finales.

On montre que la mise en œuvre de cette approche d'étude, appliquée à un large éventail de
problèmes faisant intervenir les paramètres durée et coût, rend plus performant l'utilisation d'autres
techniques.
Mots clés: Programmation linéaire, optimisation du coût et de la durée du projet.

onstruction management involves the coordination of group of
uction management involves the coordination of group of

n management involves the coordination of group of activities
where in the manager plans, organizes, staffs, directs and controls
construction projects to achieve an object, including a specification
of their interrelation ships and considering the required resources
in an acceptable time span.

Most construction managers are continually facing a situation
in which they must take a decision weather to complete the project
sooner than originally specified in the contract because of the
clients request and /or to optimize the cost of expediting. The
planned duration is decreased by crashing all critical activities
either by authorizing overtime work or applying additional
resources.

The objective of critical Path Method (CPM) and Program
Evaluation and Review Techniques (PERT) is to establish a
feasible and desirable relation ship between the time and cost of
the project by reducing the target time and taking into account the
cost of expediting. A number scheduling methods were developed
for planning and scheduling of construction projects using
graphical methods such as line of balance and vertical production
method. These techniques are neither suitable for the scheduling of
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ملخـص
ة  وذج البرمج تخدام نم و اس ث ھ ذا البح ن ھ دف م أن الھ
الخطیة كنظام لتحلیل  التكالیف الإنشائیة وذلك باختصار العمر 
ذه  د ھ ة. تعتم ة ممكن ل كلف الزمني للمشروع والحصول على أق
ادلات  ن مع ة  م ل مجموع ة لح ة فاعل ى خوارزمی ة عل الطریق

بط  ن الض ى م ة أعل ق درج ة لتحقی ة الخطی ات البرمج وإمكانی
تخدام  ي اس ث ھ یة للبح رة الرئیس الیف. والفك ى التك ة عل الرقاب
ة  ة اللازم رة الزمنی ائیة والفت ة الإنش ة بالكلف ات المتعلق المعلوم
ق  دف بشرط التواف ة الھ لكل نشاط بھدف إیجاد أفضل حل لدال
امج  ى برن ات إل ك المعلوم ة تل ك تغذی د ذل م بع ود. ت ع القی م

LINDOتحدید الحل الأمثل.لحساب المعاملات و
وق  دة تتف زات عدی ن می ھ م لقد تم اختیار ھذا النموذج لما ل
ة  یط وبرمج ي تخط تخدمة ف رى والمس رق الأخ ى الط عل
ة  ویم ومراجع ة تق ار الحرج وطریق المشاریع مثل طریقة المس
ث  ذا البح ي ھ ة ف ة المعروض ت الخوارزمی د أثبت رامج. وق الب

ي فعالیتھا في العدید من الأمثلة المت ر الزمن ة باختصار العم علق
للمشروع.

ة ات المفتاحی ة : الكالم ل كلف ة، أق ة الخطی ة البرمج خوارزمی
ممكنة، اختصار العمر الزمني للمشروع.
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linear projects nor adequate for addressing typical challenge
related to time-cost trade-off [1].

Failure of many contractors to fully use CPM or PERT exposes
fundamental failures in these models. Field and academic
research have failed to question the feasibility of the
network technique for construction. It is suggested that
these methods are neither true models nor best approximate
model of the construction process because control of
construction. It is suggested that these methods are neither a
true models nor best approximate model of the construction
process because control of construction resources is more
desirable than minimum calendar duration of the whole
project. Therefore, minimizing cost is an objective to be
considered as much as minimizing overall duration [2].

Optimal schedule cost can be determined by trial and
error for small project, but in a realistic project consisting
of many activities, such trial-and error becomes extremely
tedious and impossible. A very limited number of computer
programs are available but far from perfect. Such programs
have a limited capacity to accept time-cost data and at a
very high price. Other limitations of these programs are
that, the only data the computer can handle is the time-cost
slope for individual activities. Another serious shortcoming
has been the computational time when changes of network
logic are involved. Finally, the excessive or inappropriate
use of computers specially in a moderately sized network is
another major factor of such failures. Because of these
major failings, such programs have led to dissatisfaction
and found little acceptance in the construction industry.

Increased sophistication in optimization techniques have
lead to examine the possibility of incorporating a time-cost
trade-off within an optimization framework. When changes
in the network logic are involved, this method has
advantage that decisions required of the decision maker are
simple, and can handle a large data or alternatives. Thus
optimization technique has been developed to aid in the
quick determination of the minimum cost for every possible
value of project duration. Clearly, the use of optimization
techniques incorporated with time-cost trade-off becomes
an economic necessity and the objective of this research.

LITERATURE REVIEW

Selinger [3] developed a dynamic programming model
of a linear project. His work ignored to incorporate the cost
as decision variable in the optimization process. As
extension of the Selinger's work, Russel and Caselton [4]
formalized a N-stage dynamic programming solution into
two state variable to determine the minimum project
duration. In the optimization process, the developed model
ignored the activities costs as a decision varaible.

Reda [5] developed a linear programming to identify
minimum cost maintaining constant production rates and
repetitive projects. This method can only be used for
nontypical linear project and not applicable to construction
projects. Most of the developed models assume the
activities are accomplished serially. In reality, most
construction activities are accomplished concurrently while
others accomplished serially.

Elmaghraby [6] considered completion schedules on an
arbitrary set of milestone events by developing an efficient
algorithm to determine the project schedule, which
minimizes the sum of the total cost plus penalties for late
completion. Another extension was by Moore [7] by using
goal programming to consider multiple objectives, such as
completion times, resources leveling and operation within a
limited budget.

Senouci [1] presented a dynamic programming
formulation for the scheduling of non sequential or
nonserial activities to determine the project time-cost
profile which determines possible project duration and their
minimum project total cost. The formulation considers the
effects of interruptions, minimum project direct cost, and
minimum project duration.

COMPUTATIONAL PROCEDURE

Concept of project expediting has a considerable
economic importance especially in large and costly projects.
Cost slope is given by:
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Where: Cij =  Cost slope

Cd ij
= Crashed cost

CDij
= Normal cost

tDij
= Normal time

td ij
= Crashed time

C = increase in cost
t =  increase in time

The basic formulation of the time cost trade-off problem
has a curve of the form shown in figure 1. The advantage of
this notation used in this figure is that it replaces the normal
and crash costs by a single slope, Cij . Once the cost details

of activities are available, the formulation of linear
programming is possible. Letting Xij denote the scheduled

Figure 1: Time-cost trade-off curve nomenclature.
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duration of the activity i-j, the total cost as a function of
these variables is as follows:

 
i j

ij ij ij
i

ij
j

ijK C X K C X     

Where
i j
  denote the summation over all activities in

the project network and Kij are fixed constants whose sum

is denoted by K.
At this point, it must be recognized that when shortening

the critical path leads to reduce floats of other activities.
Continued shortening of the critical path will lead to the
formation of new critical paths and new critical activities.
When multiple critical paths are involved, all such paths
must be shortened if time advancement is to be achieved.
The effect of each shortening action must be checked to
ascertain if it has produced new critical activities. This
accomplished by network recomputation after each step in
the time reduction process. Such recomputation becomes
extremely tedious.

To have a sound system of cost and time control of a
construction project, mathematical programming is
becoming increasingly important. Linear programming uses
a mathematical model to describe the problem of concern. It
deals with the optimization of a linear objective function
subject to a set of constraint conditions in the form of linear
inequalities and/or equations. Thus linear programming
involves the planning of activities in order to obtain an
optimal result, i.e.; a result which reaches the specified goal
best among all feasible alternatives. A characteristic of
many projects is that all work must be performed in some
well-defined order. This formulation concerns the
scheduling of the activities, which combine to make a
project. The analysis requires a graphical illustration of the
starting and ending times and costs for each activity of the
project are known. The linear programming formulation
provides a means of selecting the least costly schedule for
desired completion time.

Linear programming analysis may be utilized to
maximize a linear function subject to a finite number of
linear constraints. In constructing the model, the objective
function is to minimize the overall cost in order to reduce
the completion time. The mathematical form of the
objective function is given by:

Minimize f (X1 ,X2,...,Xn) = c1X1 +...+ cnXn

where:
c1, c2,..., cn are real cost coefficients.
X1, X2, ..., Xn are decision variables to be determined.

The mathematical form consists of a set of "m" contraints of
inequality form:

1nn1212111 bXa...XaXa 

2nn2222121 bXa...XaXa 

mnmn22m11m bXa...XaXa 

Where aj, bj, cj are real constants and Xj  0.

Combining the objective, objective function and the
constraints, the linear programming model can be written in
a concise notation form as follows:

Minimize j

n

1j
jXc



subject to

ij

n

1j
ij bXa 



for all "i"

X for all jj  0 " "

By solving the linear programming problem, the crash
schedule and the corresponding crash cost can be found.

Illustrative example
It is useful at this point to illustrate the procedure with a

small example in which there are six activities as shown in
figure 2. Each activity is accomplished by a single crew
starting from the first activity to the last. Table 1
summarizes the input data for the example.

The proposed method can handle activity time-cost
functions. The numerical example was performed on
personal computer using LINDO [9]. It was easy to tackle
this problem by visual inspection and simple judgement.
This simplicity will assist the understanding of the
procedure. The computation procedures of the project
starting with the first activity to the last one has the form:

Minimize  50YA + 60YB + 100YC + 25YD + 75 YE + 100YF

Subject to the following constraints:

X2 + YA  4
X3 + YB  8

Figure 2: Project network.

Activity Duration Cost
Normal Crash Normal Crash

A 4 2 400 500
B 8 5 800 980
C 3 2 600 700
D 10 6 500 600
E 8 6 800 950
F 7 4 700 1000

Table1: Activity cost and duration data for the project.
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X4 + YC  3
X5 - X2 + YD  10
X3 - X2 + 0  0
X5 - X3 + YE  8
X5 - X4 + YF  7
X4 - X3 + 0  0
YA < 2
YB < 3
YC < 1
YD < 4
YE < 2
YF < 3
X5 < 12

and all variables are nonnegative. The objective function
minimizes the sum of the total construction cost that occurs
in all links of the system during all of the periods. Acting
within the constraints and related costs, it is required to
determine the crashing time for each activity, which will
make the cost function a minimum.

ANALYSIS AND RESULTS

The linear programming model will not only take into
account the activities on the critical path, but will also
consider the noncritical activities, which in their turn
become critical as the project time decreases.

Solution of the model is presented in table 2, which
indicates that the project can be completed within 11 week
deadline by spending an extra 505 JD.

Subtracting the crash-time amounts from the normal
completion, the result indicates that activity B should be
completed in 5 weeks, D in 7 weeks, E in 6 weeks and F in
6 weeks. The nodes of the network, or milestone of the
project, are indicated by X2 through X5.

The linear programming solution also provides a
valuable sensitivity analysis. As shown in the computer
output in table 2, the "reduced cost" column indicates the
cost increase in activities not crashed by this solution and
achieve the same project deadline. Further interesting
results appear in the computer output is the amount of
available reduction used and is presented in the "slack or
surplus" column. The net cost of changing the solution is
presented in the third column "dual prices" which is solved
per period in each constraint. As can be seen in row 16,
there will be a cost increase of 200 JD to reduce the overall
project time X5 by one week from the 11-week deadline.
Finally, the sensitivity analysis indicates the range of the
coefficient values over which the optimal solution remains
unchanged.

The sensitivity analysis can also be helpful for assessing
the effects of uncertainties in some of the data items. The
further uncertainties in the data may be examined directly
by running the program with upper and lower limits on the
data to check the sensitivity of the results in different
circumstances. The linear programming analysis carried out
to determine the optimal policy of investing in extra
resources in order to meet the deadline is obtained. It is
important for project manager to recognize the flexibility of

the system that can be used to explore numerous possible
opportunities to the contractor.

Many iterative methods for solving this problem have
been proposed; they are usually descent methods that do not
guarantee a minimum cost. Excessive number of iterations
or functions evaluations causes the failures. For comparison
of commercially available CPM/PERT computer program
see the work of Smith [8].

This approach allows the user to easily manipulate
different project networks of various difficulties
representing real world applications, and to study the
effectiveness of the model in the case of large projects. The
implementation of the developed model is tested on a large
number of linear optimization problems and shown to have
more efficient and reliable results, generates a considerable
computational savings, along with an increase in robustness.

Table 2: LINDO outpout file

LP OPTIMUM FOUND AT STEP 16

OBJECTIVE FUNCTION VALUE

1) 505.000

VARIABL
E

VALUE REDUCED
COST

YA .000000 25.000000
YB 3.000000 .000000
YC 0.000000 100.000000
YD 3.000000 .000000
YE 2.000000 .000000
YF 1.000000 .000000
X2 4.000000 .000000
X3 5.000000 .000000
X4 5.000000 .000000
X5 11.000000 .000000

ROW SLACK OR
SURPLUS

DUAL
PRICES

2) .00000 -25.00000
3) .00000 -175.00000
4) 2.00000 .00000
5) .00000 -25.00000
6) 1.00000 .00000
7) .00000 -75.00000
8) .00000 -100.00000
9) .00000 -100.00000

10) 2.00000 .00000
11) .00000 115.00000
12) 1.00000 .00000
13) 1.00000 .00000
14) .00000 .00000
15) 2.00000 .00000
16) .00000 200.00000

N° ITERATIONS = 16

DO RANGE (SENSITIVITY) ANALYSIS? Y
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CONCLUSION

In this work, we propose an algorithmic model based on
linear programming incorporated with a minimal time-cost
trade-off in a construction project. The format of the model
lends itself to a wide range of variables and considerations.

The present modeling strategy has shown the resources
of this interactive approach including a bulk of data to
completely analyze the project is easily possible. It allows a
great number of parameters to simulate project conditions
and contractor's preference and provides potentially useful
tool for decision making on project scheduling.

Various computer programs reveal that these packages
cannot satisfy the users in a large number of activities. Use
of linear programming models outperforms the default
algorithm implemented in these packages to minimize total
construction cost. It appears that the programming in
project time-cost trade-off concept has more to offer than
the graphical methods and scheduling software packages. A
real understanding of this concept leads to improved
solutions to large scale systems facing construction cost
control systems and network compression.

The cost of the network activities has been optimized for
various overall duration. The optimum trade-off of time
against cost has been made. This approach is an acceptable
tool of management and proving to be not only superior
method for planning, scheduling and controlling project
progress, but also is very real and valuable assets to
contractors in convincing the owner of their potentials and
abilities. With the introduction of better and more rigorous
methods of planning work, together with cost analysis, the
construction control will become more systematic.
Mathematical models are used more and more for executive
planning functions. In all of these, decisions must be made
to carry out the operation in the best way possible in light of
the restraints that are bound to exist.
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RANGES IN WHICH THE BASIC IS UNCHANGED:

OBJ COEFFICIENT RANGES
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ALLOWABLE
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ALLOWABLE
DECREASE

YA 50.0000 INFINITY 25.000000
YB 60.0000 115.0000 INFINITY
YC 100.0000 INFINITY 100.00000

0YD 25.0000 25.0000 25.000000
YE 75.0000 INFINITY 75.000000
YF 100.0000 INFINITY 100.00000

0X2 .0000 25.0000 25.000000
X3 .0000 INFINITY 115.00000

0X4 .0000 INFINITY 100.00000
0X5 .0000 200.0000 INFINITY

RIGHTHAND SIDE RANGES

ROW
CURRENT

RHS
ALLOWABLE

INCREASE
ALLOWABLE
DECREASE

2 4.000000 1.000000 3.000000

3 8.000000 .000000 1.000000

4 3.000000 2.000000 INFINITY

5 10.000000 1.000000 3.000000

6 .000000 1.000000 INFINITY

X3 .000000 INFINITY 115.00000

X4 .000000 INFINITY 100.00000

X5 .000000 200.0000 INFINITY

RIGHTHAND SIDE RANGES

ROW
CURRENT

RHS
ALLOWABLE

INCREASE
ALLOWABLE
DECREASE

2 4.000000 1.000000 3.000000

3 8.000000 .000000 1.000000

4 3.000000 2.000000 INFINITY

5 10.000000 1.000000 3.000000

6 .000000 1.000000 INFINITY

7 8.000000 .0000000 2.000000

8 7.000000 2.000000 1.000000

9 .000000 2.000000 1.000000

10 2.000000 INFINITY 2.000000

11 3.000000 1.000000 .000000

12 1.000000 INFINITY 1.000000

13 4.000000 INFINITY 1.000000

14 2.000000 INFINITY .000000

15 3.000000 INFINITY 2.000000

16 11.000000 1.000000 .000000



AYMAN H. AL-MOMANI

76

[7]- Moore L.J., Taylor III B.W., Clayton E.R., and Lee
S.M., "Analysis of a Multi-Criteria Project Crashing
Model," American Institute of Industrial Engineering
Trams., Vol. 10, N°2, (1998), pp. 163-169.

[8]- Smith L.A., "Comparing Comparing Commercially
Available CPM/PERT Computer Programs", Journal
of Industrial Engineering, Vol. 10, N°4, (1997).

[9]- Schrage L.E., User's manual for LINDO; Scientific
Press, Palo Alto, California, (1981).

[10]- Al Serraj Z.M., "Formal development of line-of-
balance technique", ASCE Journal of Construction

Engineering and Management, Vol.116, 4, (1990),
pp. 689-704.

[11]- Savin D., Alkass S., and Fazio P., "Construction
ressource leveling using neural networks", Canadian
J. of Engineering, Vol.23, (1996), pp.917-925.

[12]- Siemens N., "A Simple CPM Time-Cost Trade-off
Algorithm," Management Science, Vol.17, N°6,
(1997),  pp.B354-363.


