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Abstract   

This study presents a new theoretical determination of yield stress for pure mono-crystal materials based 

on the concept of the Efficient Area of Stress (EAS). From the atomic yield stress on the atomic surface a², 

given by the model of Orowan, the macroscopic yield stress is then obtained through a Scale Law of Measure 

(SLM) which depends only on the lattice spacing and a constant . This relation shows that the efficient 

atomic dimension is a fractal dimension. The precision obtained by the SLM is of an atomic order compared 

to the error (102 to 104 MPa) obtained by classical theories. The SLM gives also new theoretical relations for 

the elastic limit of strain, the toughness and the fracture strength. The SLM is finally extended to non pure 

materials to take into account the microstructures (grain size, impurity, phases, solutions, etc.) and the 

temperature effects by introducing the concept of an "efficient atomic distance".  

Key words: Yield stress, atomic cleavage fracture, scale factor, efficient area of stress, 
fractal. 
 

Résumé 

Cette étude présente une nouvelle détermination théorique de la limite élastique pour les matériaux 

mono-cristaux basée sur le concept de Section Efficace de Contrainte. A partir de la limite élastique atomique 

sur la surface atomique a2, donnée par le modèle d'Orowan, la limite élastique macroscopique est alors 

calculée à partir d'une loi de facteur d'échelle (SLM) qui ne dépend que de la dimension atomique a et d'une 

constante . Cette relation montre que la distance atomique effective est une dimension fractale. La précision 

obtenue par la SLM est d'ordre atomique en comparaison avec l'erreur (102 à 104 MPa) obtenue par les 

théories classiques. La SLM donne aussi de nouvelles relations théoriques pour la limite élastique de 

déformation, pour la ténacité et pour la limite de rupture. La relation est finalement étendue aux matériaux 

non purs pour prendre en considération la microstructure (dimension des grains, impuretés, phases, solutions, 

etc.) et l'effet de température par l'introduction du concept de "distance effective atomique". 

Mots clés: Limite élastique, limite atomique de scission, facteur d'échelle, surface 
effective de contrainte, fractales. 
 
 
 
 
 
 

ince Orowan, many models have been presented for the theoretical 

determination of yield stress from the cleavage fracture at the atomic 

level. The models of Kelly [1] and Macmillan [2], the electrostatic models 

or the spring model [3] are all based on the original Orowan model, which 

was first made in 1958 [4]. Theses models depend only on the Young 

modulus which can be obtained from geometrical values through an 

analysis of the interatomic energies and force [5]. Nevertheless, none of 

these models has so far obtained a clear satisfaction since they all give 

theoretical values, which are 100 to 1000 MPa higher than the 

experimental values. This error comes from a lack of a renormalisation to 

take into account the size effect when passing from a microscopic 

dimension to a macroscopic dimension. Springs, electrostatic or 

dislocation models must also take into account the complexity of the 

atomic world: real forces between atoms, number of neighbouring atoms, 

degree of fill, plans of slip and crystalline defects (micro-cracks, 

interstices, Frankel and Schottky defects, dislocations, joins at grains, 

precipitate, etc.). The classic literature gives also the theories of Hall [6] 

and Petch [7], Stroh [8], Cottrell [9] and Smith's [10], which can give the 

cleavage fracture, but only at the grain size level.  

In this paper a new theoretical determination of yield stress for pure 

materials is  presented. This  theory uses the concept of the  Efficient Area 
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 ملخص 
لحد المرونة  انظري اجديد ايقدم هذا البحث تصميم

للمواد الـخالصـة إنطلاقا من حد المرونة الذرية على 
.فحد  Orowanمن معادلة  المعطاةالـمساحـة الذرية 

 لا يتعلقالمرونة  محسوبة إنطلاقا من قانون السلم الذي 
إلا بالمسافة الذرية الفعلية و من ثابتة. هذه العلاقة تبين أن 
المسافة الـذرية هي مسافة جزئية. الدقة المحصلة عليها 
هي ذرية مقارنة بالخطئ المحصل عليه من طرف 

ا علاقات النظريات الكلاسكية. التصميم المقدم يعطي أيض
نظرية جديدة للتحصل على حد مرونة التشوه، المتانة ، 
حد الانكسار. الـعلاقة طبقت أيضا على المواد الـغير 
الخالصة لأخذ بعين الاعتبار التركيبة المجهرية )مسافة 
الحبيبة ، الشابهات، الطور، المحلول....( وفعل الحرارة 

 بإدخال معنى "المسافة الذرية الفعلية".
حد المرونة، الحد الذري الانشطار،  :الكلمات المفتاحية

 عامل السلم، المسافة الفعلية للضغط، مسافة جزئية.
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of Stress (EAS). The effective stress is only acting on the 

EAS. Damage is defined by the reduction of the area under 

stress. This definition was first given by Murakami [11]. 

The concept of area reduction and EAS has also been 

successfully used by Hult [12], Chaboche [13] and 

Krajcinovic [14] to develop their CDM (Continuum 

Damage Mechanics) theory at the grain scale (10-6). In this 

study this concept of EAS is extended to the atomic level 

(10-10) by dividing an apparent microscopic area a², 

represented by the atomic model of Bohr, into a space of 

matter c² , called the EAS which sustain stress, and an 

empty space v² . From the atomic yield stress on a² , given 

by the model of Orowan, the macroscopic yield stress is 

then obtained through a Scale Law of Measure (SLM) 

which depends only on the atomic size a and a constant . 

The possible extension of the SLM to give new relations for 

the elastic limit of strain, the toughness and the fracture 

strength is investigated, but future work has to be done to 

fully investigate these relations. 

The concept of SLM is finally extended to poly-crystals 

to take into account the effects of microstructures and 

temperature through the introduction of the concept of  the 

"effective atomic dimension" which represents the affected 

new lattice pacing.  

 

THE CLASSICAL LAWS OF YIELD STRESS AT 
THE ATOMIC LEVEL FOR PURE MATERIALS 
   

The elastic (cleavage) limit Sya of a pure material at the 

atomic level depends on the equilibrium distance between 

atoms r0. This cleavage fracture is given in the following 

form:    

0
2 r/ES ya       (1) 

The value of  is given equal to 2/ by Kelly [1] and 

Macmillan [2], 2 by the electrostatic model [3] or 4 by the 

springs model [3]. These models belong to the original 

model developed for the first time by Orowan in 1958 [4], 

which has a value of 1.     

The energy of a crystal is equal to the sum of the 

Coulomb energy of attraction Ua and the potential energy of 

repulsion Ur [3,5]:   

 r/MUa  et 2
1

b
r r/zbU           (2) 

z is the neighbouring atoms. b1, b2 are the constant of 

repulsion. M is the constant of Madelung.  is the factor of 

colomb  = q² / ( 4  0). The total energy is then equal to: 

   
nr/Br/BU 21                 (3) 

B1 and B2 are constants of energy. The equilibrium 

interatomic distance is obtained from by letting: dU/dr = 0. 

The force at a distance r is given by: 

F = dU / dr                       (4) 

Stiffness is also given by: 

 K = dF / dr = d²U / dr²      (5) 

For small strain, we have: K = (d²U / dr²)  at  r = r0 

which gives [5]: 

K = M  / r0
3       (6) 

Young’s modulus is given by [5]:   

E = K / r0  = M  / r0
4     (7) 

Some values of K and E are shown in table 1.  

 
 
 
 
 
 
 

A NEW THEORETICAL DETERMINATION OF 
YIELD STRESS FOR PURE MATERIALS 
  

Definitions of the microscopic and the 
macroscopic EAS     

First, we have to define the following four areas:   

- A square microscopic apparent area a² that represents the 

atomic section of the material according to the quantum 

model of Bohr (with actually a difference of /4). The 

elastic limit of this surface is called the microscopic 

apparent yield Sya. 

- The precedent microscopic apparent area is made of two 

areas: an atomic EAS area c² and a void v². The elastic limit 

on c² is called the microscopic effective yield Syc. 

- A square apparent macroscopic area A² of 1 m² composed 

of n² a². The elastic limit on this surface is called the 

macroscopic apparent yield SyA. 

- The precedent macroscopic apparent area is made of two 

areas: A macroscopic EAS C² composed of n² c² and a 

macroscopic void V². The elastic limit on C² is called the 

macroscopic effective yield SyC. 

The scale factor for the four areas is the same:                              

A²/a² = C²/c² = n²           (8) 

Proposition 1: Stiffness is independent of scale.   

Proposition 2: Toughness is independent of scale.    

Proposition 3: the macroscopic and microscopic elastic 

limits differ only on a geometrical scale factor. This 

concept is called the "geometrisation" of physics.     

In using propositions 1 and 2, one can demonstrate that 

the effect of scale n [15] is n3/2 on critical forces, n1/2 on 

displacements and n-1/2 on stresses. This means that: 

n/SS yy 12
       (9) 

 

Calculation of stress limits 

- Calculation of microscopic apparent yield Sya 

We take equation (1) of Orowan: S²ya = E  / a. By using 

[15]:  = E a / (2)² we find:    

Sya =  E / (2)          (10) 

- Calculation of  macroscopic apparent yield SyA 

Proposition 4: A material is said to be perfect when one 

supposes that it is filled by the square atoms without letting 

any emptiness. We have from the definitions of A:   

A = na = 1  

then:        n  = 1 / a                     (11) 

By using equation (9) and (10), we obtain:   

  a/EaSS yayA  2         (12) 

Bounding Material 
K 

Nm-1 

E 

GPa 

Covalente  C-C 180 1000 

Ionique Na-Cl 9 à 21 30 à 70 

Metallic Cu-Cu 15 à 40 30 à 150 

Hydrogen H2O-H2O 2 8 

  Table 1:  Values of K and E. 
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- Calculation of microscopic EAS c 

Proposition 5: the atomic EAS is defined as a square area 

c² which is the real efficient area that sustains the stress and 

then gives the real stress in the atomic level.    

C²/c² = n² ,   with    n =1/a 

n/SS ycyC   

a/SnSS yCyCyc         (13) 

To find c one can use the scale factor n'  between a and c:   

   a/c = n’           (14) 

  'n/SS ycya               (15) 

We then have: 

 2yayc S/S'n   

 2yayc S/S/a'n/ac   

By using equation (13), we find :   

     22

yCyayayC S/SaSa/S/ac             (16) 

Proposition 6: SyC  is defined as the effective stress that acts 

on the macroscopic EAS. It must then correspond to the 

experimental stress Sy , which acts on the material. One has 

therefore:   

 SyC  = Sy                     (17) 

By replacing in (16) and using (10), one finds:   

       22
2 yyya S/aES/Sac         (18) 

- Calculation of macroscopic effective yield SyC 

We have:                                                               

aSS ycyC   and    'nSS yayc   

This gives: 

    'naSS yayC                (19) 

Proposition 7: The dimension of c is an unknown fractal 

dimension:     

c = ak               (20) 

 k is called the measure of recovery.  One determines k as 

follows: k = log (c) / log(a). c is given by relation (18). If 

proposition (7) is true, one should find k as constant. We 

also have from equation (14):   

        n’ = a/c = a/ak = a1-k        (21)   

By replacing in equation (19), one finds finally the 

value of elastic limit of the macroscopic EAS:   

 
 

  22 /kD

a 2 / EaSS DD
yayC




        (22) 

The results of experimental and theoretical values of 

elastic limits are shown in table 2. The experimental values 

are the cross reference values obtained from AISI, ASTM, 

FED, MIL SPEC, and SAE specifications but mainly from 

the excellent state of the art data given by Chaudron from 

his monographs on pure materials [16]. The experimental 

values given by the different sources sometimes vary 

significantly with very slight difference in purity, condition 

of production and testing. The values of k are also shown in 

table 2. Proposition 7 is verified since we find:   

- For CC materials:  k = 1.618                       (23)   

- for CFC and HC materials :   k =1.47                   (24) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Scale Law of measure "SLM" 

Equation (22) can be put in the following general form: 

M(L) = aD M(aL)          (25) 

with M(L) corresponding to SyC and M(aL) corresponding 

to Sya. This relation is called the SLM (Scale Law of 

Measure) relation. The SLM is a renormalisation process 

which gives a measure in scale by a measure in another 

scale. The generalisation to other measure has to be 

investigated.  

 

Possible extensions of the theory  

- Calculation of strain limit 

The macroscopic strain limit can also be obtained as 

follows:   

yC = SyC / E        (26a) 

By replacing SyC by its value given by equation (22), we 

find: 

    
 

  22

1

/kD

a 2 / D
yC




       (26b) 

Table 3 shows the values of yC for some materials. We 

get here nearly the limits of 0.2% of permanent strain which 

is admitted for the definition of the elastic limit for 

materials whose elastic limit is not well distinguished.  We 

observe that physical strain limit has a pure geometrical 

value.  

 

 

 

 

 

 

 

 

Mat. 
a 

10-10m 

E 

GPa 
Sy 

MPa 

SyC 

MPa 

c/a 

10-5 
SyC/ Sy k 

Centred cubic Materials   CC 

W 3.165 406 1000 977 0.13 0.97 1.62 

Mo 3.147 310 720 745 0.14 1.03 1.61 

Ti  3.306 110 250 267 0.16 1.060 1.61 

Pu 3.879 92 260 230 0.12 0.88 1.62 

Centred faces cubic materials  CFC 

Al 4.041 70 40 36 3.14 0.9 1.47 

Ni 3.524 210 70 104 8.03 1.48 1.43 

Cu 3.615 112 60 56 3.19 0.93 1.47 

Ag 4.520 76 55 40 2.18 0.73 1.49 

Pb 4.920 17 14      9,2 1.8 0.66 1.51 

Hexagonal cubic materials  HC 

Be 2.28 

3.57 

294 90 

 

130 6.16 1.4 1.43 

Mg 3.209 

5.210 

44 25 24 9.9 0.96 1.48 

Zn 2.664 

4.945 

100 100 55 1.25 0.55 1.53 

Sn  5.831 

6.491 

41 15 22   11 1.46 1.43 

Table 2:  Values of experimental yield stress (Sy) and theoretical 

yield stress (SyC). 

 

Mat. 
a 

10-10 m 
y 

Al 4.041 0.0036 

Ni 3.524 0.0020 

Cu 3.615 0.0033 

Ag 4.520 0.0046 

Pb 4.920 0.0047 

Table 3: Values of y. 
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- Calculation of Toughness   

The maximum stress on a point distant by rf from the 

crack-front is given by the following relation:   

 ...
r

K

f





2

1
11       (27a) 

when rf tends toward to the atomic dimension; in the limit 

case, we then have:   

   aSK yaic            (27c) 

We use a factor  to take into account the "defects" in 

the material and its ductility:    

   aSK yaic        (27d) 

The local toughness is equal to the global toughness 

from proposition 2. Equation 10 gives:   

      42 /aEa/EK ic       (27e) 

The experimental values suggest an average value of 5 

for :  

          aEKic 2         (27f)  

Table 4 shows experimental and theoretical Kic values. 

 

 

 

 

 

 

 

 

 

 

 

- Calculation of fracture limit for ductile materials    

To take into account the ductility of materials, a first 

approximation consists in introducing the phenomenon of 

plasticity at the atomic level and to take an atomic distance 

 ap instead of a. p is a coefficient of plasticity which lies 

between zero and one.     

Equation (1) of Orowan: p
fa

a/ES 2
 and equation 

[15]  = E ap  / (2)²  give:  

Sfa =  E / (2)       (28a) 

 SfC =  E / (2)   a pD      (28b) 

Some values of p are given in table 5. One notes that at 

the atomic level elastic fracture is the dominant mode of 

failure. For an exact analysis, it is necessary to use the 

following relation:  

    a/ES pfa
2 ,    with p >>               (29) 

 

 
 
 
 
 
 

THE EXTENSION OF THE SLM TO NON PURE 
MATERIALS BY THE CONCEPT OF EFFICIENT 
ATOMIC DISTANCE 
 

For non-pure material, the SLM can be extended to take 

into account the microstructure and the temperature effects 

by changing the value of the atomic distance a by the 

efficient atomic distance aeff  through the following relation: 

M(L) = aeff 
D M(aL)                (30) 

We then have to study the change of the atomic lattice 

distance aeff with microstructure and temperature. This 

study is beyond the scope of this paper. There is an 

abundant literature that gives a direct relationship between 

atomic lattice and microstructure effects for the numerous 

materials and solid solutions. Only some important 

illustrative results will be given below. 

 

Effect of grain dimension 

The factor of multiplication aD is a universal factor. It 

can be used at any scale. We can then use it at the grain 

scale. Let’s take the scale factor n instead of 1/a (which are 

equal from equation 11) and used it in equation 22:   

   
 

  22 /kD

n2 / EnSS D -D -
yayC




        (31) 

The usual theories ignore the fractal dimension and then 

take (k=1 and then D=1/2). If we take an area of grain d and 

fill it with atom a, we then have: na = d and therefore n = 

d/a. This gives a new SLM definition from the gain 

dimension as:    

  2121 / - /D -D
yayC d a 2 / Ed aSS       (32) 

We find the exponent of the grain size is 21/d  ; this 

correspond to classical theories like:    

- The theory of Hall [6] and Petch [7]:   

 21
0

/
f Kd                  (33a) 

- The theory of Stroh [8]:   

       
 

21

21

12

/

/

iyeff d   












       (33b) 

- The theory of Cottrell [9]:   

  
212 /

f d 
K

 
                 (33c) 

- Smith's relation [10]:   

       
 

21

21

21

4 /

/

f d   
E

 












             (33d) 

We can identify equation (31) with the last theories (33 a-d) 

to get the values of the constants. In the case of Smith 

relation, if we use [15]:  = Ea/(2)² and by taking for 

example an average value of 0.3 for Poisson ratio, we find:  

  212150 //
f d a2 / E,  . 

This corresponds remarkably to our equation (31) by a 

factor of only 0.5. 

Mat. 

a 

10-10 m 

E 

GPa 

Kic 

Exper. 

MNm-3/2
 

 

Kic 

theory 

MNm-3/2 

Theory/ 

Experience 

 % 

Ti 3.306 110 2.2 3.9 2.8 1.273 

W 3.165 400       10 4.89      10.06 1.006 

Al 4.041 70 2.0 5.0        1.99 0.995 

Ni 3.524 214 5.9 5.2 5.7 0.996 

Cu 3.615 112 2.7 4.49 3.0 1.111 

    Table 4: Experimental and theoretical values of fracture toughness. 

 

Material Sf p 

Al 200 0.70 

Cu 400 0.66 

Ni 400 0.71 

Ag 300 0.68 

Table 5:  Values of  p. 
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Effect of atomic solid solution 

In an atomic solution we have two materials A and B. 

The resulting average lattice distance depends on whether 

they are of the like kind, either both solvent or both solute 

or of the opposite kind. A first rule for the factor affecting 

solubility is given by Hume-Rothery [17]. This rule states 

that if the difference between atomic sizes exceeds 15%, 

solid solubility should become restricted.  A size factor 

using the closest distance of approach can be used for the 

effective atomic size. Raynor [18] suggest a value of 100 

[(aB-aA)/aA]. The closest distance of approach sometimes 

does not express the lattice spacing in the solution (as in the 

case of Gallium for example). In this case, Axon and 

Hume-Rothery [19] have suggested an estimation of an 

apparent atomic diameter (AAD) and Massalsky and King 

[20] have suggested the measure of a mean atomic volume 

(). They give the strain energy as: 

 cf
c

AW

2
1













                    (34) 

with A = constant,  = bulk modulus and f(c)= function of 

composition c. For most alloys they find linear dependency 

of atomic volume with composition.  

A model used for the calculation of the strain in solution 

is given by Eshelby [21]. In this model, the increase of 

volume (V2) due to an increase of an internal cavity (V1) is 

equal to: 

   V2/V1 =3(1-)(1+)  1. 6                 (35) 

By using Vergard’s law [22], which states a linear 

dependency on composition of lattice spacing, Friedel [23] 

has given an average atomic distance a for an infinite 

dilution and r for an finite concentration from initial atomic 

distance r1 and r2 of both the solvent and the solute: 

     

 
 

 
1

212

1

21

1

12

1

1

2

1

2

1


















X/X

r

rr

rC

rr

X

X

ar

ra

             (36) 

with X = compressibility and C = concentration.   

The phenomenon of order-disorder (O-D) which 

influences the structure of solid solutions is also 

investigated throughout in the literature. Long-range order 

has been studied and reviewed by Guttman [24]. The 

condition of order is that dissimilar atoms must attract each 

other more than similar atoms in order to lower the free 

energy. This conditions is expressed as: 

EAB  < 1/2  (EAA+EAB)                 (37) 

If r is the fraction of A atoms in the alloy and p is its 

probability to occupy a site, long range order S is then 

defined by Bragg and Williams as [25]: 

    S = (p-r) / (1-r)            (38a) 

If q denotes, the fraction of unlike nearest neighbours 

and qr and qm are the fractions of unlike nearest neighbours 

at conditions of maximum randomness and maximum 

order, then short range order is defined by Beth as [26]: 

     S = (q- qr ) / (qm - qr)       (38b) 

Lattice distances in solid solution are already available 

from the voluminous data given by Pearson [27]. Pearson 

shows that changes in lattice spacing influences also the 

magnetic properties. 

 

Other effects (temperature, impurities, etc.) 

Numerous relations show the correlation between 

crystalline dimensions and these effects. We can only 

mention some of them.  The effect of temperature for 

Copper is given by Mitra [28]:  

  at  =  3.6193 + 5.81 10-5  T + 3.710-8  T² - 5.2 10-11 T3   (39) 

For phase  of Ti, Schmitz [29] provide tables, which give 

the variation of  at with temperature. For phase , Medoff 

[30] gives the following results: 

    at = a0 [1 + 9.928 (t-25) 10-6 – 0.626 (t-25²) 10-10]     (40a)                          

    ct = c0 [1 + 11.079 (t-25) 10-6 – 9.698 (t-25²) 10-10]   (40b) 

The effect of impurity for phase  of Titanium is given 

by Wassilewsky [31] who shows that lattice parameters 

(c/a) increases from 1.59 to a limit of 1.63 for an equivalent 

increase of O2 concentration from 0 to 0.5%. 

 
DISCUSSIONS 
   

Results of yield stress  

- Table 2 shows that the mean value of SyC/Sy is found to be 

equal to 0.99. This result is exceptional since the classic 

theories [1,2,3,4] based on the model of Orowan give error 

of the order of 102 to 104.    

- Relation (22) of theoretical elastic limit confirms 

proposition n°3 of "geometrisation" of physics. The scale 

factor n is actually related to the material by the relation: 

n=1/a. The factor a represents really the atomic 

"dimension" and not only the atomic distance since it takes 

into account the density of the material by an optimal 

stacking.    

- the value of k given is for large scale (passage from the 

microscopic to the macroscopic world). For two values 

belonging to the same world, say  macroscopic world,  we 

then have:  

  -D
yayC nSS 11

 and   -D
yayC nSS 22

  

then:         -D
yCyC nSS 

12
  

If:  k = 1, then -D = -½. We find then relation (9).    

- We can notice that ratio c/a (which measures the degree of 

compactness or fill) is lower for CC materials whose 

compactness is 68%. This degree is higher for CFC and HC 

materials whose compactness are 74%.  The ratio (c/a)² or 

a2k/a²  is the degree of fill. If k = 1 then a = c. It is this 

confusion that make the classical analyses confound matter 

with the atom whereas matter is rather in the microscopic 

EAS. The factor of multiplication aD is estimated between 

10-2 and 10-4 corresponds precisely to the degree of error of 

the classic analysis. The ratio c/a is the order of 10-4 to 10-6. 

This value corresponds to the ratio of the core to the atom, 

which is actually in the order of 10-4. The EAS could then 

represent the dimension of the atomic core or the dimension 
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of any elementary particle. The exact calculation between c 

and the core could indicate the existence of void in the core, 

which is physically admissible.  

- Petch relation supposes that we can extrapolate the grain 

size to the atomic dimensions and hence obtain the yield at 

the atomic scale. Christ [32] has shown that this is not true. 

This can be explained by the fact that the fractal dimension 

changes with scale. At the grain size, k = 1 and D = 0.5 wile 

at the nanoscale and atomic scale k = 1.6 and D = 0.2. 

 

Insurance Quality (IQ) tests and simulation 
tests 

Even though tests always remain standards, the value of 

k (and therefore Sy) depends on the microstructural state of 

the material, temperature, method of production and the 

damage, which occurred during its length of life. The 

difference between experimental and optimum values given 

by equation (23) can constitute an IQ criteria to appreciate 

the quality of the material. As the methods of productions 

are improved, k values will tend toward the given 

theoretical values. These optimal values can never be 

(theoretically) exceeded. With the theoretical determination 

of Sy, it becomes unnecessary to make destructive testing 

for the characterisation of the material. An NDT which give 

the lattice dimension will be sufficient when used with the 

SLM. It will also not be necessary to make expensive 

simulation tests to get the change of propriety by scale. 

            

Universal Measure through scale factor 

The procedure pursued to determine the macroscopic 

Measure Sy is a standard procedure that can be 

(theoretically) applied to any physical Measures 

(temperature, pressures, energy, etc.) where exist a 

difficulty to get a macroscopic measure from its 

microscopic measure and inversely!. These concern critical 

passages as bifurcation, transition between critical flow in 

fluid mechanics and aerodynamic, whirls, bursting of 

whirls, instabilities, privileged angles in aerodynamics or in 

botanicals, chaos and disorders, etc.  The SLM depend only 

on the scale factor aD or n-D which can be used as a factor of 

normalisation to gives the variation of any measure with 

scale.  

 

CONCLUSION 
   

The presented SLM theory strikes by its simplicity, its 

precision and its concepts (gometrisation and scale factor) 

that can be generalised to other measures. The SLM has 

been used for the theoretical determination of the elastic 

limit of pure materials. The mean of experimental over 

theoretical (SyC/Sy) value is found to be 0.99. This result is 

exceptional since the classic theories [1,2,3,4,5] based on 

the model of Orowan give an error of the order of 102 to 

104. The best theories are the one that stops at the grain 

level (Petch, Hall, Stroh, Cottrell, Smith) and which can be 

viewed as special cases of the SLM.  

It is found in this study that the microscopic EAS is also 

a good representation of the atomic core where it gives a 

new representation of the microscopic world as a fractal 

world. The main result of this paper shows that the atomic 

distance is the key factor for characterisation of the 

materials. At this level (the Amstrong scale), very small 

distance differences can make significant differences in the 

characteristics (mechanics but surely also magnetic, optical, 

chemical or electronic characteristics) of the materials. This 

is of a fundamental result in physics.  

The possible extension of the SLM to give new relations 

for the elastic limit of strain, the toughness and the fracture 

strength has been investigated. The results seem acceptable, 

but future work has to be done to fully investigate these 

relations. 

A suggestion for the extension of the SLM to take into 

account the microstructure (grain size, impurity, phases, 

solutions, etc.) and the temperature effects is given through 

the concept of an "efficient atomic distance" which 

represents the affected new lattice spacing.  

The generalisation of the SLM relation to other physical 

measure is to be investigated to see if this relation can be 

used as a universal criterion which gives the scale or the 

size effect on physical measures for "renormalisation" 

schemes. This could lead to new design for high 

performance materials by conceiving materials with high 

"efficient atomic dimension".  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOMENCLATURE 
 
A2  Apparent macroscopic area under stressing. 

a2  Apparent microscopic area under stressing. 

a  Atomic crystal lattice dimension. 

aeff  Efficient atomic distance (dimension). 

b1, b2 Constants of repulsion. 

B1, B2 Constants of energy. 

C2  Effective macroscopic area under stressing. 

c2  Effective microscopic area under stressing. 

D  Fractal parameter. 

d  Grain size. 

E  Young (elastic) Modulus. 

F  Force. 

K  Stiffness. 

K1  Stress intensity factor (mode I). 

Kic  Toughness (mode I). 

k  Measure of recovery for the fractal dimension of "c". 

M  Constant of Madelung. 

M(L) Measure of a quantity "L". 

n  Scale factor between A and a (= A/a). 

p  Coefficient of plasticity. 

n'  Scale factor between a and c (a/c). 

r  Distance between atoms. 

rf  Distance front crack front. 

r0  Equilibrium distance between atoms. 

Sy  Experimental yield (or elastic) stress. 

Sya  Microscopic apparent yield stress acting on apparent 

microscopic area "a2". 

Syc Microscopic effective yield stress acting on effective 

microscopic area "c2". 

SyA Macroscopic apparent yield stress acting on apparent 

macroscopic area "A2". 

SyC Macroscopic effective yield stress acting on effective 

macroscopic area "C2". 

Sf Experimental fracture limit (or ultimate strength). 
2
faS   Fracture limit (or ultimate strength) on apparent 

microscopic area "a2". 

 

 

 



   A new theoretical determination of yield stress based on the concept of efficient area of stress. 

 83 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
REFERENCES 

 
[1]- Kelly A.,  Tyson W.R., Cottrell A.H., Phil. Mag., 15, (1967), 

p.567.  

[2]-  Macmillan N.H.,  J. Mat. Sci., 7, (1972), p. 239.  

[3]- Dorlot J.M. , Baillon J.P., Massounave J., "Des Matériaux", 

Ed. Ecole Tech. Montréal. 

[4]- Orowan E., (1984), Cleavage Fracture of metals, Rep. Prog. 

Phy., 12, (1986), p. 185. 

[5]- Ashby M.F. , Jones D.R.H., "Matériaux", Dunod, (1991). 

[6]- O Hall E., Proc. Phys. Soc., 64B, (1951), p. 163. 

[7]-  Petch N.J., J. of Iron Steel, 173, (1953), p. 25. 

[8]-  Stroh A.N., Proc. R. Soc., A222, (1954), p. 404. 

[9]- Cottrel A.H., Trans. Ame. Inst. Min. Metall. Petrol. Engrs., 

212, (1958), p. 192. 

[10]- Smith E., "Proc. Conf. Phys. Basis of yield and Fract", Phys. 

Soc., Oxford, (1966). 

[11]- Murakami S., "Notion of Continuum Damage Mechanics 

and its Application to Anisotropic Creep Damage Theory", 

J. Eng. Mat. and Technology, 105, (1983), p. 99. 

[12]- Hult J., "Continuum Damage Mechanics – Capabilities, 

imitations and Promises, Mechanisms of Deformation and 

Fracture", Pergamon Oxford, (1979), p. 233. 

[13]- Chaboche J.L., "Continuum Damage Mechanics; Part I- 

General Concepts", Journal of Applied Mechanics, 55, 

(1988), pp. 59-64. 

[14]- Crajcinovic D., "Continuum damage Mechanics", Applied 

Mechanics Review, 37, (1984), p. 1. 

[15]- Pluvinage G., "Exercices de Mécanique élasto-plastique", 

Cépaduès-Edition, (1997). 

[16]- Chaudron G., "Monographie sur les matériaux de haute 

pureté", Masson, (1977). 

[17]- Hume-Rothery W., "Elements of structural metallurgy", The 

Institute of Metals London, Monograph and Report Series, 

n°26, (1961).  

[18]- Raynor G.V., "The theory of alloy phases", ASM, Metal 

Park, OH, (1956), p. 321. 

[19]- Axon H.J. and Hume-Rothery W., Proc. Of Roy. Soc., A 

193, (1948), p. 1. 

[20]- Massalsky T.B. and King H.W., Proc. Mat. Sci., 10, (1961), 

p. 1. 

[21]- Eshelby J.D., Solid State Physic, 3, (1956), 79. 

[22]- Vergard L., Z. Crystal., 67, (1928), p. 239. 

[23]- Friedel J., Phil. Mag., 46, (1955), p. 514.  

[24]- Guttman L., Solid State Physics, 3, (1956), p. 145. 

[25]- Bragg W.L. and Williams E.J, Proc. Roy. Soc., London, 

A145, (1934), p. 669. 

[26]- Beth H.A., Proc. Roy. Soc., London, A150, (1935), p. 552. 

[27]- Pearson W.B., "A handbook of lattice spacing and structures 

of  metals & alloys", Pergamon Press, London, & New York, 

(vol. 1, 1958 and vol. 2, 1967). 

[28]- Mitra G.B. and Mitra S.K., Indian J. of Physics., 37, (1963), 

p. 462. 

[29]- Schmitz B., Pranghe N. and Dunner P., Z. Metallkd, 59, 

(1968), p. 377. 

[30]- Medoff J.I. and Cadoff I., J. of Metals, 11, (1959), p. 581. 

[31]- Wassilewsky R.J., Trans. Met. Soc. AIME, 221, (1961), p. 

1231. 

[32]- Christ B. and Smith G.V., Act. Met., 15, (1967), p. 809.  

 

2
fCS  Fracture limit (or ultimate strength) on effective 

macroscopic area "C2". 

Ua Coulomb energy of attraction at atomic level. 

Ur  Potential energy of repulsion at atomic level. 

U Total energy at atomic level. 

z Number of neighboring atoms. 

 Factor of defect for toughness calculation. 

f   Failure stress. 

f Shear failure stress. 

 Free surface energy for elastic mode of failure. 

p  Free surface energy for plastic mode of failure. 

 Factor of Coulomb  = q2 / (40). 

0  Dielectric constant in vacuum. 

yC  Macroscopic strain limit. 

  Orowan factor. 


