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Abstract 

The purpose of this paper is to investigate the path integral representation of Dirac propagator by 

considering the case of the free spinning particle. Thanks to the introduction of a suitable 

transformation, the domain of integrations over Grassmannian variables becomes free from the 

restriction and then via the Grassmannian sources, the integration over relative velocities are readily 

carried out. Such a way of calculation allows us to get the explicit spinor structure of the propagator. 

Key words: Path-integral, Dirac particle, relativistic equation. 
 

Résumé 

Le but de ce papier est d’investiguer le formalisme des intégrales de chemins pour le propagateur 

de Dirac en considérant le cas de la particule libre. Grâce à une transformation convenable, les 

intégrations sur les variables de Grassmann ne sont plus restreintes et l’introduction des sources 

Grassmanniennes fait que les intégrations sur les vitesses sont facilement effectuées. Ces calculs, 

nous ont permit d’avoir une forme spinorielle explicite du propagateur. 

Mots clés: Intégral de chemin, particule de Dirac, équation relativistique. 
 

 

 

 

 

 

 

any different attempts to incorporate spin into a path integral 

formulation have been proposed in the past. However, because the 

spin takes discrete values it has been difficult to suggest for it a continuous 

path. Nevertheless, there has been a few approaches proposed to solve this 

complicate problem which can classify in two categories: either the spin is 

described by bosonic (commuting) variables, or by fermionic 

(anticommuting) variables. In the bosonic case we can quote firstly the 

early model suggested by Feymann who has proposed a path integral 

representation of the free Dirac electron in one dimension based on Poisson 

stochastic process [1]. However, its extension to the case of interaction has 

not been investigated. The second attempt is the Schulman where he has 

tried to describe this spin of the particle as a top [2]. Unfortunately, its 

extension to the relativistic spinning particle was faced to serious 

difficulties due to the complicated dynamics of the relativistic top. The last 

model of the first category is the Barut one [2], where the spin evolution is 

described by internal variables (c-number) different of those of the top. The 

second category, due to Berezin and Marinov [4], could be considered as a 

renew of the Dirac propagator by means of path integral in terms of 

Grassmannian variables, of the exp(iaction). One can claim that this was the 

first successful attempt, which dares to describe correctly the spinning point 

particle. In the last decade, Fradkin and Gitman [2] have returned to this 

model and have succeeded to establish a rigorous formulation of this path 

integral representation with effective classical actions being already 

reparametrization invariant and super gauge invariant. Besides, the interest 

in this model is its close relationship with string theory. 

Our paper is organized as follow. Section 1, we present a review of the 

path integral representation for the relativistic spin ½ particle propagator, 

derived by Fradkin and Gitman [2] where the spinning degrees of freedom 

are   described   by   Grassmannian   variables. In   section 2, we  apply  this 
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 ملخص
الهدف من  ذن ا الملنهو ذنت اان اداك ال  نهم   
على المالك لعرض من شنر درنراك ت  يقرلنل علنى 

 حهلة الجارك الحر.
قهلإانن عهنة ق حننتر   منهاننقة تننم  ال  ننهم   
على م غررا  غراامه   صنق    شنريرة. ادانهو 
منننهقغ غرااننمه   جعننو ال  ننهم   علننى الانننرعة 

  اهلة.
ه قهلحصنتو علنى قنرنة إ  ذ ه اليررلة  ام  لنن

 تاضحة للمن شر الناقي.
ال  ننهم   عللهلماننلكي جاننرك : الكلماا ا المتاا    

 درراكي المعهدلة الناقرة.
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formalism to the fundamental case of the free particle 

where we carried out explicitly all bosonic and 

Grassmannian integrations. To this aim, we use a 

convenient transformation, which liberates the spin 

variables from the boundary conditions. That is the spin 

Gaussian integrations are not restricted and the integration 

over Grassmannian proper time allows us to extract the so-

called Polyakov spin factor. 

 

RELATIVISTIC SPINNIG PARTICLE 
 

In this section, we present a review of the path integral 

representation for the relativistic spinning particle 

propagator, constructed and investigated by Fradkin and 

Gitman [2]. The main interest of this representation consists 

in its reparametrization invariant and super gauge invariant 

action. 

Consider first a relativistic spinning particle interacting 

with an external electromagnetic field described by a vector 

potential Aµ(x). The corresponding causal Green’s function 

Sc(x,y) satisfies to the Dirac equation: 

          ,yxy,xSmP c                     (1) 

where: 

.gAiP                             (2) 

Multiplying both sides of Eq. (1) by 5, we get: 
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Following Schwinger proper time method, the 

propagator ),(
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yxS c
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operator cS
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 in coordinate space: 
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Making use of Eq.(3) and Eq.(4) it follows that: 
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is the inverse of the pure Fermi 

operator ).( 5 mP  Consequently it can be presented by 

means of integration over even and odd Grassmann 

variables: 
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where  is an even and  is an odd variable. Using Eq.(4) 

we get: 
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where H=[m2(P)2] (Pm5). Now in order to obtain 

a path integral representation for the propagator, we fellow 

the usual procedure by dividing the time interval of the 

evolution into N  equal parts and then inserting (N1) times 

the unit decompositions ,dxxx  we obtain:  
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where xa=x0, xb=xN and =1/N. 

Expanding the matrix elements, as usual, to the first 

order in  and then inserting the resolutions of unity 

,dppp the Green’s function is written, using the 

midpoint prescription, as: 
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Using the integral representation of delta functions: 
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with T stants for the Dyson time ordering symbol, 

necessary in this case because   matrices are supposed 

formally as dependent on time . This allows us to deal 

with  matrices like with odd Grassmann variables, 

consequently one can associate to  n() five odd  sources   

 n() such that:  
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where n are odd variables anticommuting with   matrices 

and  n are odd variables obeing to the boundary conditions              
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Using Eq.(13) we get the Hamiltonian path integral 

representation of the Green’s function:  
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To obtain the Lagrangian formulation, we make the shift 
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measure. As we will see in what follows, this measure will 

play the role of absorbing a divergency which comes from 

the linearization of the quadratic term in the variable x (the 

kinetic term) present in the action. It should be noted that 

the boundary term n(1)n(0) and the antiperiodic 

conditions for the spin variables Eq.(15) in this approach 

arise by natural way. 

 

FREE DIRAC PARTICLE PROPAGATOR 

 
In order to develop some techniques with the path 

integral representation Eq.(17), let us consider in detail the 

simplest and fundamental case of a free particle, for which 

the free Dirac propagator ),(
~

ab
c xxS is given by Eq.(17) 

with vanishing electromagnetic field A(x):  
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Let us first fix the gauge conditions by performing 

functional integrations over pe and p which produce 

respectively the delta functional )(e and ).(  These delta 

functions remove the integrations over the paths e and  by 

fixing them to  

                              e  e0  ,    0.                                            (19) 

Completing the square in x and linearizing it, we get:  
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If now we integrate the first term present in the action 

by parts to isolate x and next perform the functional integral 

over x we get )( p which implies that  

                               p  Const.                                    (21)  

p is, as it is expected, a constant four vector. This reflects 

the conservation of the momentum. After disentangling the 

delta functions only one integration over p remains and the 

result will be: 
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In the next step we integrate out the Grassmann proper time 

0 and obtain: 
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At this stage, in order to be free of the boundary 

conditions Eq.(15), we replace the integration over odd  

by one over velocity : 
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Obviously the integrations over  are not restricted, i.e. 

the boundary conditions are satisfied automatically. 

Actually, in virtue of the change (24), the boundary term 

n(1)n(0) which presents an ambiguity in performing 

functional integrations over spinning variables is also 

eliminated. So, the Green function is written using a 

condensed notation as:  
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Introducing odd sources n associated to velocities 

n, we get:  
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where I() is Gaussian path integral over Grassmann 

variables: 
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Now, the integration over  is straightforward and gives  
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It is easy to verify that the inverse of  is given by: 
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Now, by using one of the properties of delta functions, 

Eq.(28) takes the form:  
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Inserting this result in Eq.(26) and performing 

differentiations with respect to , we get:  
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where we have used the easily proved formula: 
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Expanding exp(inn) to the first order only (the other 

terms do not contribute) and next performing differentiation 

with respect to  , we get:   
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Finally, integrating over the proper time e0 and 

multiplying the result by 5 taking into account:  
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we obtain the familiar expression of the free propagator of a 

spinning particle:  
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CONCLUSION 

 
We have succeeded in calculating within the framework 

of path integrals the Green’s function for free spinning 

particles using a general representation for the propagator 

via bosonic and fermionic path integrals. The procedure of 

integrating out the fermionic variables is based on a 

convenient transformation, which allows us to be free of the 

boundary conditions and by the same time to get a Gaussian 

path integral easily performed. Thanks to the introduction 

of Grassmannian sources, the integration over velocities is 

readily carried out. We can say that this elementary 

problem is a good example to present some useful 

techniques which can be used to solve more complicated 

problems such as plane wave [6], constant electromagnetic 

field [7], where we are faced by non trivial path integral. 
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