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Abstract

In this paper we study the basic properties of the /-adic algebras (spectrum, radius of regularity,

group of inversible elements, entire functions, etc.).
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A n I-adic C-algebra is an algebra endowed with a topology called I-
adic, denoted t; and defined by the sequence (1"),5( , of ideals, as

a fundamental system of neighborhoods of zero. Notice that, if C is
endowed with the usual absolute value, then this algebra is not
topological. But, it is so when C is endowed with the discrete topology.
We examine the compatibility of the /-adic topology with the usual
operations. The finite product, the quotient, the completion and the
unitization behave well. But, this is not the case for the infinite product,
the projective limit, the inductive limit and the induced topology. We
consider topologies which play analogous roles of these. We give
necessary and sufficient conditions for the group G(4), of invertible
elements, which is always a topological group, to be open. In this case, it
is also closed. If we consider Sps(a) as a subset of A, then
Sp4(a)=Sp4(a) NI".We also prove that Sp,(a)= U Spa,, (a),
n>0 Mel’
where Ay is the localization of 4 on M and I' is the family of all maximal
ideals of 4. We also obtain that r(a)<l,implies that
(e—a)~! =e+ Ya" where r is the radius of regularity. In general, 7(a) is
nx1
different from the spectral radius ~ Sup |X| . We notice that if / is not in
reSp 4(a)

the Jacobson radical R(A4), of A, then 1; can not be complete. The
analogous of Johnson's results in the Banach case, is that the discrete
topology is the unique complete /-adic topology on semi-simple algebra.
The Gelfand transformation is continuous if, and only if, every
multiplicative linear functional is continuous. We prove that an entire
series operate on an element a in (4,t;) if, and only if, a is the radical
"JI"ofl.

Throughout this paper, 4 will denote a commutative C-algebra with
unit e and 7 an ideal of 4. The /-adic topology on A, denoted by 1;, is the

topology defined by the sequence (I"),so of ideals, as a system of

neighborhoods of zero. If the complex field C is endowed with the
discrete topology, then (4,1;) is a topological algebra with (globally)
continuous product.
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1. STABILITY PROPERTIES

The [-adic topology behave well with some standard
constructions but not with others. For the latters, we give
situations where it does or provide a substitute one.

The next example shows that the restriction of t; to a
subalgebra B of A4 is not, in general, /-adic.

Example 1.1. Denote by C[X Y] the algebra of complex
polynomials of two indeterminates. Endow it with the /-
adic topology given by [ =XC[X Y ] Consider the
B=YC[X,Y]of C[X,Y]A
neighborhoods of 0 for the topology (t;)/B is(X"B),>0-
Let J be an ideal of B such that (t;)/B =1, . Then, there

subalgebra system  of

exists a positive integer n such that J" is contained in XB,
hence (t;)/B =1 yp, which is a contradiction because T yp

is strictly finer than (t;)/B.

However, there exists in general an /-adic topology
which is the coarset /-adic topology on B making the
canonical injection continuous. This is the topology ;5.

A finite product of /-adic algebras is /-adic. But this is
not the case, in general, for an infinite product as the
following example shows.

Example 1.2. Let (4,1;),be an infinite family of

Hausdorff /-adic algebras. Then, 7y is not coarset than the
product topology, for every ideal J=[]J;of []4;,with
/ !

Jy#4; except for a finite number of indexes. If ]_[I["’ is
l

contained in []J;, with n; =0 except for a finite number for
i

indexes, then J;contains [ " for every /. So for n;=0,
Jy=4;, a contradiction. Now, if J=[[J; with J;=4,
!

except for a finite number of indexes, then for J;=4;, w;
is not continuous.

Here is an example where there exists an /[-adic
topology on an infinite product of /-adic algebras. It is the
coarset of /-adic topologies such that the canonical
projections are continuous. Let (4;,Tp);be an infinite
family of /-adic algebras, where P is a prime ideal of 4,

for every /. Consider t;, where /=[]F,.
/

A quotient of an /-adic algebra is always /-adic, and if J

A
is an ideal of 4, then the topology t,,, defined on 7by
a

, coincides with the quotient topology.

(I+J)
J

Concerning completion and proceeding as in ref. [2], we
obtain the following result.
Theorem 1.3. Let (A4r1;) be
algebra. Then,
denoted

a Hausdorff I-adic
there exist a complete I-adic algebra

(4;)and a  continuous  monomorphism

(D:(A,‘EI)—>(1;1,‘ti) such that ®(A) is dense subalgebra of

(121,‘[? i)

The next example shows that the projective limit of /-
adic topologies is not, in general, /-adic.
Example 1.4. Consider the projective system
(Aot frg apec,  Where 4, =CLX], 1) =T(yip) 4, for
every A in C. Then Lm(4),/}, )5 pec :kl;[CA;M and the

projective topology is the product one which is not /-adic

by (Example 1.2.). However, there is on []4,; an [-adic
reC

topology which is the coarset /-adic topology such that the
canonical projections are continuous. It is given by the ideal

[T(X+A)4, . This is a particular situation of the following.
A

Proposition 1.5. Let ((4;,tp).fii)k jer- be a projective
system of I-adic algebras, where P, is a prime ideal of A4,
Jor every | in L. Put A=Lm(A},fi))ijer- The I-adic
topology 1;defined by I=lim (B, fi) jer is the coarset I-

adic topology, on A, such that
7 .'(A,r,)—)(Al,rPI) are continuous.

the projections

In general, an inductive limit of /-adic topologies is not
always [-adic. Actually, there is no a finest /-adic topology
on an inductive system of /-adic algebras such that the
canonical injections are continuous.

Proposition 1.6. Let ((4,,7; ),/um)n=0 be an inductive

system of  Hausdorff  I-adic algebras and
A=lm (A4, fm)n=0- Then, for every ideal I of A such that

the injection i,:(4,,77,)—>(4,7;) are continuous, there

exists an ideal J of A that the injection
in:(A4,,7r,)—> (At )are continuous and tyis strictely

finer than ;.

Proof. Since i,:(4,,t;,)—>(4,t;)is continuous, there

exists, for every integer n >0, an integer 7, >0such that

i,(I;7) is contained in 7, so I contains @ i,(,"). It suffices
n=>0

toput J=@i,(I,").
n>0

2. THE GROUP OF INVERTIBLE ELEMENTS AND
JACOBSON’S RADICAL

We endow G(A) with the topology induced by t;. The

map a > alisa homeomorphism of the topological group
G(A) onto itself. As a different fact, with the Banach case,
the openess of G(A4) is in relation with the radical.

Proposition 2.1. The following assertions are equivalent.
(i) G(A) is open.

(ii) 1 C RadA.

(iii) Every maximal ideal of A is closed for ;.
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Notice that if RadA contains /, then G(A4) is also closed
for t;.

The spectrum of an element a of A4, denoted Spa(a) is
{AeCla —Aeg G(A)}. As a subset of C, Sp4(a) is closed. If
we consider Spu(a) as a subset of A4, then we have the

following, where Sp 4(a) denotes the closure of Spa(a) in
(A,t;); whence de closedness of Spu(a) if (4,t;)is
Hausdorff.

Proposition 2.2. Let (A,t;) be an I-adic algebra. Then

Sp 4(@)=Sp 4(a)+ NI", for every element a in A.
n>0

Proof. Let y be an element of [SpA(a)+ ﬂ[”], we have

n>0

y=A+b, with 1is in Sps(a) and bin (NI". Hencey =14 —

n>0

bisin (y+I"NSpy(a), ie., yis in Sp,(a). Conversely,
let y be an element of Sp 4(a) and n( a positive integer.
Then (y+1")NSp4(a)is not void, so there exist an

element A in Sp4(a) and an element b, in ™ such that y
= Ao + bo. There exist also an element A;in Sp4(a) and an
, in [" such that y=\;+b;. Thus
Ao—A;=b;—by. If Lg#X;, then b;—by is invertible which is
contradictory. Hence b;=h, and y isin Sp 4(a)+ DOI n,

nz

element b

Proposition 2.3. Let A be an algebra, then for every

element a in A, Sp4(a)= U Spy (ﬂ} where I is the set
Mer  M\e

of all maximal ideals of A.

Proof. Let A be an element of Sp, (g} then Ae—< is
e e

not invertible in Ay and so is Ae—a in A. Hence A is in

Spa(a). For the converse, if A is an element of Sp(a), then

Ae—a 1is not invertible in 4 and so it is an element of a

maximal ideal M of 4. Hence re—2 is in MAy. Thus
e

re—£ is not invertible in Ay, i.e., Aisin Sp (2).
e M\ e

Recall that an algebra is said to be semi-local if it has a
finite number of maximal ideals. By the previous
proposition, the spectrum of every element a in a semi-local
algebra 4, is void or finite.

We suppose that (A4,t;) is a Hausdorff /-adic algebra.
The topology can be defined by the metric d. The
radius of regularity of an element a, denoted r(a), is

defined by r(a)=1Inf(d(a",0))""". One easily checks that
nx1
r(@)=lim(d(a" 0)"" .
n

Remark 2.4. In general, the quantity r(a) is different from

the spectral radius ~ Sup |A|. Indeed, consider the algebra
reSp 4(a)

A = C[[X]] of formal power series. Endow it with the /-adic
topology defined by 7 = XC[[X]]. For AX)=3+X, r(f(X))=1

because (f(X))"is in 10\1, for every integer n > 0. But

Sup |A|=3because Sp4((X)) = {3}.
reSp 4(a)

By the same argument as in the proof of theorem 9. p.
12 of ref. [1], we obtain the following results.
Proposition 2.5. Let (A,t;) be a complete I-adic algebra
and a an element of A such that r(a)<l. Then (e—a)is
invertible and (e—a) ' =e+ Ya".

n>1

Corollary 2.5. Let (A,t;) be a complete I-adic algebra
with unit e. Then, each element a of A with d(e—a,0)<1, is
invertible.

As a consequence, we have the following result.

Proposition 2.6. Let (A,t;) be a complete I-adic algebra.

Then G(A) is open; hence (A,ty) is never semi simple.

Proof. Let a be an element of G(A).Then G(A) contains

a+I). Therefore, b roposition 2.5, e+a ') is
Yy prop

invertible, and G(A) being a group, (a+b):a(e+a71b) is
also in G(A). Then see proposition 2.1.

We, of course, do have different /-adic topologies on a
given algebra 4. First notice that, if / and J are two ideals of
A, then t;1is finer than t; if, and only if, there exists an

integer n>0 such that J contains I”. Now, consider the
algebra C(X) of all continuous, complex valued
functions on X, where X is a Haussdorff completely regular
topological space. Let x and y be two different
elements of X. Then, by corollary 2.2 of ref[3],

I, ={feC(X)/f(x)=0} and Iy:{feC(X)/f(y)zo} are
two different maximal ideals of C(X). Hence, <t I, and

Ty, are incomparable. The analogous of Johnson’s result

for a semi-simple Banach algebra is the following: In a
semi simple algebra A, the discrete topology is the unique
complete /-adic topology on 4. We now give a result where
semi-simplicity is not involved.

Proposition 2.7. There exists on an algebra A a unique I-
adic topology which is not discrete and not trivial if, and

only if:
i) A admits a unique prime ideal P.
ii) Each ideal of A contains a power of P.

Proof. If P and P’ are two prime ideals of A, then by
hypothesis, Tp=1p,; so there exist two positive integers #,

m such that P’ contains P” and P contains (P')” . Hence P’
contains P and P contains P’, i.e., P = P'. On the other
hand, since for any ideal / of 4 t;=1p, there exists a

positive integer n such that I contains P". Whence
necessity. For the converse, if / is an ideal of A4, then P
contains / and so t;is finer than tp. Since there exists a
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positive integer n such that / contains P", we have 1p finer
than t; .

The last proposition applies, in particular, to algebras of
valuation in which the non zero ideals are the sets P”",
ng 20, with P the unique maximal ideal.

3. GELFAND TRANSFORMATION

Concerning the continuity of mutiplicative linear
functionals, we have the following.
Proposition 3.1. Let (A,t;) be an I-adic algebra and y a
multiplicative linear functional. Then y is continuous if,
and only if, Kery contains 1.
Proof. Suppose that Kery contains /. Let xo be in 4 and
e>0. Then B(x(xp).e) contains y(xg+/). Conversely,
suppose that / is not contained in Kery. Then, by the
maximality of Kery, I" is not contained in Kery, for any
integer n>0. So I" +Kery=A.Since y is continuous, there
exists, for €>0, an integer n>0 such that B(0,e) contains
x(I").Hence C=y(A)=y(I"+Kerfy)=y(I")is contained
in B(0,g) which is absurd.

Corollary 3.2. Let (A,t;) be an I-adic algebra such that

G(A) is open. Then every multiplicative linear functional is
continuous.

We consider the Gelfand transformation x> x. We
by m®#(4)  (resp. m(4)) the set of all
multiplicative (resp. continuous multiplicative)

denote
linear

functionals on 4. Suppose m"(A)#{0} and endow
C(m"(A4),C)with the topology defined by the sets
V(o) = lgem® (DS ) -gCupl<e, 1<i<n}
Kooy 0 M (A);

neighborhoods of an element f in m¥(4). Here is an

with  €>0, as a system of

example where m"(A4)#=m(A).

Example 3.3. Let (A,.

algebra such that Rad(A4) contains a non nilpotent
element x. In ref. [4], S. Rolewicz has constructed a
sequence (@), such that, for every k m, n in N,

) be a commutative Banach

arnzl and ag i <Aapi1 4941,,> and he has considered
B:{(xn)nzl CA: Y ay ||, | <+eo, Vk}. Endowed with the
n>1

usual operations, the convolution product and the norm
defined by |(x,),=>)x,]. B is a normed algebra
nl1

containing A and verifying Rad(B)# (\Kery . This
Xem#

algebra admits a maximal ideal M of infinite codimension.

If we endow it with the /-adic topology defined by M, then

there is no continuous multiplicative linear functional on B.

10

Proposition 3.4. The Gelfand
A:(4,t;)—>C(m"(A),C), x—>X, is continuous if, and only
if, m*(A)=m(A).

transformation

Proof. By the previous proposition, if y is continuous, then
Kery contains 1. So V(x,x,€) contains A(x+1), for every
€>0. Conversely, suppose that there a non
continuous multiplicative linear functional y on 4. Then, /

exists

is not contained in Kery and so is for /”, n>0. Hence, for
every integer n>0, ["+Kery=A. For €>0, there exists
an integer n=0such that V(0,y,e)contain A(/").But

I=I"v+Kery(\I.So y(I) is contained in B(0,g). Hence
¥x(1)=0; a contradiction.

4. ENTIRE FUNCTIONS

Now, we examine the behavior of entire functions. They
not operate on the whole algebra.

Proposition 4.1. Let (A,t;) be an I-adic algebra and
f(2)=2\,z" an entire function, which is not a
n

polynomial. The series Y \,a" converges in A if, and only
n

if, aisin JI .
Proof. Sufficiency: Let nybe the smallest positive integer

such that a0 is in [ For every positive integers
r>0, s>0and m=nys, we have
dhpa— dYha= z%na”:a”os[ }
which is in 7°. Hence, Y A,a" is Cauchy in (4,t;), thus it
n

m+1<n<m-+r

Z}Lnanfno

0<n<m+r 0<n<m m+1<n<m+r

is convergent. Necessity: if > A,a” converges in (4, 7),
n

then there exists an integer n such that, for every integers

r>0, m>ny, we have  YA,a"— YA,a"el. Consider

0<n<m+r 0<n<m
an integer = m>=ny;  such that XmO +1#0. Since
Sh,a"— Yh,a"isin I, then A, ™" is in 7 and it
0<n<mygy+1 0<n<m,
follows that a™*!is in I

Example 4.2. Consider the algebra 4 = C [[X]] of formal
power series. Endow it with the /-adic topology defined
by 7 :C[[X]lBy theorem 4.1, a non polynomial series

>A,a" on 4 converges if, and only if, @ is in .
n0

5. ILLUSTRATION

To illustrate phenomena we encountered we, at last,
examine them on a very classical example.
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Example 5.1. Let X be a completely regular Hausdorff
space. Denote by C(X) the semi-simple algebra of all
continuous, complex valued functions on X with the usual
pointwise operations. The closed maximal ideals in C(X)
are the subsets I, ={feC(X)/f(x)=0}, with xeX ([3]).
We examine the algebra C(X) endowed with the /.-adic
topology 1t,,xeX.Since X is completely regular
Hausdorff space, 7, #C(X)and 17 {0}, for every integer
n>0. Hence, 1, is not trivial nor discrete. Let x#y be two

different elements in X. Then, 7, and 7, are incomparable.

The topology t, is not Hausdorff. Indeed, let y=#xin X.
Then, there exists a continuous function f:X —[0,1], such

that f(x)=0and f(y)=1.So, feNls,since for every
n=0

integer n>1, W €l,.The group G(C(X)) of invertible
elements in C(X) is the set {f eC(X)/f(»)#0, VyeX} Itis
not open. Indeed, if there exists » in N such that (1+/ )’C’O) is
contained in G(C(X)), then, for every y in X and every fin

I, f"(y)#1 which is not true, because if y=xin X, then
there exists f in C(X) such that f(x)=0and f(y)=1.So,

" (»)=f()...f(y)=1.As it is known, the nonzero

multiplicative linear functionals on C(X) are in one to one
correspondence with the points of X via the relation

ye . where  x, (f)=f(y),for  feC(X)([3]). The
unique nonzero continuous character on C(X) for t,is

Yx- At last, since [, is a maximal ideal of C(X), a non

polynomial series z‘bkna” converges if, and only if, a is
n2t
in/,.

Example 5.2. Let 4y be a radical commutative algebra,
e.g., L'[0,1], the multiplication being the convolution

operation; f*gzjéf(t—s)g(s)ds.A proper ideal I of the
unitization 4 of Ao is of the form 7yx{0}, where 7,={0}

11

is an ideal of Ao. The Jacobson radical of 4 is Ay and
the group of invertible eclements of A4 s

G(A):{ao+7»/a0 €4y, KeC*}. It is open, for every [-adic
topology on A (cf. Proposition 2.1). Next, we remark that
the unique nonzero character y on A4 is defined as follows
%:A—>C, ap+r—A. By the theorem 3.1, it is continuous,

for every topology on A.

Example 5.3. Let C(X) be
of all continuous complex valued functions on X,
where X is a completely regular Hausdorff space.
And let 4 be the unitization of a given radical
algebra Ao. Then, the algebra B=C(X)xA is not radical
and not semi-simple. The group of invertible element
in Bis {f €C(X)/f(»)#0, VyeX Ilag+M/age dp,heC?}.
Consider on B the [-adic topology defined by the ideal
I=1.xJ, where I,={feC(X)/f(x)=0} and J an ideal
of A. The group G(B)is open if, and only if, x=0
(cf. Proposition 3.2). Let ¥ be a character on B. Then,
Xeic(x) (resp. xoiy )is a character on C(X) (resp. on

A4), where iciy):C(X)—>B, f>(f,0) and i,:4—>B,
ar—>(a,0). Hence, the

functional on B are in one to one correspondence with
the points of X  via the relation yH>y,, where

the semi-simple algebra

nonzero multiplicative linear

Xy (fap+A)=f(y)+A. A character y,is continuous if,
and only if, y=ux.
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