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Abstract 

In this paper we study the basic properties of the I-adic algebras (spectrum, radius of regularity, 

group of inversible elements, entire functions, etc.). 

Key words: Algebra, Topology, I-adic, spectrum, radius of regularity, entire 
functions. 

Résumé 

Dans ce papier, nous étudions les propriétés de base des algèbres I-adiques (spectre, rayon de 

régularité, groupe des éléments inversibles, fonctions entières, etc.). 

Mots clés: Algèbre, Topologie, I-adique, spectre, rayon de régularité, fonctions 
entières. 
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n I-adic C-algebra is an algebra endowed with a topology called I-

adic, denoted I and defined by the sequence 0)( n
nI , of ideals, as 

a fundamental system of neighborhoods of zero. Notice that, if C is 

endowed with the usual absolute value, then this algebra is not 

topological. But, it is so when C is endowed with the discrete topology. 

We examine the compatibility of the I-adic topology with the usual 

operations. The finite product, the quotient, the completion and the 

unitization behave well. But, this is not the case for the infinite product, 

the projective limit, the inductive limit and the induced topology. We 

consider topologies which play analogous roles of these. We give 

necessary and sufficient conditions for the group G(A), of invertible 

elements, which is always a topological group, to be open. In this case, it 

is also closed. If we consider SpA(a) as a subset of A, then 
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where AM is the localization of A on M and  is the family of all maximal 

ideals of A. We also obtain that 1,(a)r implies that 
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naeae where r is the radius of regularity. In general, r(a) is 

different from the spectral radius 
 )(aSpA

Sup . We notice that if I is not in 

the Jacobson radical R(A), of A, then I  can not be complete.  The 

analogous of Johnson's results in the Banach case, is that the discrete 

topology is the unique complete I-adic topology on semi-simple algebra. 

The Gelfand transformation is continuous if, and only if, every 

multiplicative linear functional is continuous. We prove that an entire 

series operate on an element a in (A,I) if, and only if, a is the radical 

" I " of I. 

Throughout this paper, A will denote a commutative C-algebra with 

unit e and I an ideal of A. The I-adic topology on A, denoted by I , is the 

topology defined by the sequence 0)( n
nI of ideals, as a system of 

neighborhoods of zero. If the complex field C is endowed with the 

discrete topology, then (A,I) is a topological algebra with (globally) 

continuous product. 
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 ملخص

في هذا المقال قمنا بدراسة الخواص الأساسية 
طيف، قطر التنظيم، زمرة العناصر ( I-adicللجبر 

 .)القابلة للقلب، الدوال الطبيعية

، طيف،  adic-Iجبر، تبولوجيا،  : الكلمات المفتاحية
 الطبيعية.   الدوال التنظيم ، قطر
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1. STABILITY PROPERTIES 

The I-adic topology behave well with some standard 

constructions but not with others. For the latters, we give 

situations where it does or provide a substitute one. 

The next example shows that the restriction of  I  to a 

subalgebra B of A is not, in general, I-adic. 

Example 1.1.  Denote by C[X,Y] the algebra of complex 

polynomials of two indeterminates. Endow it with the I-

adic topology given by  .,YXXI C Consider the 

subalgebra  YXYB ,C of  .,YXC A system of 

neighborhoods of 0 for the topology BI /)( is .)( 0n
nBX  

Let J be an ideal of B such that JI B  /)( . Then, there 

exists a positive integer n such that 
nJ is contained in XB, 

hence XBI B  /)( , which is a contradiction because XB  

is strictly finer than ./)( BI  

However, there exists in general an I-adic topology 

which is the coarset I-adic topology on B making the 

canonical injection continuous. This is the topology .BI  

A finite product of I-adic algebras is I-adic. But this is 

not the case, in general, for an infinite product as the 

following example shows. 

Example 1.2. Let lIl l
A ),(  be an infinite family of 

Hausdorff I-adic algebras. Then, J is not coarset than the 

product topology, for every ideal 
l

lJJ of 
l

lA , with 

ll AJ  except for a finite number of indexes. If 
l

n
l

lI is 

contained in ,
l

lJ with 0ln except for a finite number for 

indexes, then lJ contains ln
lI , for every l. So for 0ln , 

ll AJ  , a contradiction. Now, if 
l

lJJ with ll AJ   

except for a finite number of indexes, then for ll AJ  , l  

is not continuous. 

Here is an example where there exists an I-adic 

topology on an infinite product of I-adic algebras. It is the 

coarset of I-adic topologies such that the canonical 

projections are continuous. Let lPl l
A ),(  be an infinite 

family of I-adic algebras, where lP is a prime ideal of lA , 

for every l. Consider l , where .
l

lPI  

A quotient of an I-adic algebra is always I-adic, and if J 

is an ideal of A, then the topology 
J

JI defined on 
J

A
by 

,
)(

J

JI 
coincides with the quotient topology. 

Concerning completion and proceeding as in ref. [2], we 

obtain the following result. 

Theorem 1.3.  Let ),( IA   be  a  Hausdorff  I-adic 

algebra.  Then,    there   exist   a  complete   I-adic  algebra 

denoted ),ˆ(
Î

A  and a continuous monomorphism 

)ˆ()(:
ÎI AA   such that (A) is dense subalgebra of 

),ˆ(
Î

A  . 

The next example shows that the projective limit of I-

adic topologies is not, in general, I-adic. 

Example 1.4. Consider the projective system 

,)),,(( , C  fA  where  XA C ,
  AX )( for 

every  in C. Then 



C

C AfA ,),(lim and the 

projective topology is the product one which is not I-adic 

by (Example 1.2.). However, there is on 



C
A an I-adic 

topology which is the coarset I-adic topology such that the 

canonical projections are continuous. It is given by the ideal 

.)( 


AX This is a particular situation of the following. 

Proposition 1.5.  Let ,)),,(( , LlkklPl fA
l  be a projective 

system of I-adic algebras, where lP is a prime ideal of lA , 

for every l in L. Put .),(lim ,  lkkll fAA The I-adic 

topology l defined by Llkkll fPI  ,),(lim is the coarset I-

adic topology, on A, such that the projections 

)()(
lPlIl AA:  are continuous. 

In general, an inductive limit of I-adic topologies is not 

always I-adic. Actually, there is no a finest I-adic topology 

on an inductive system of I-adic algebras such that the 

canonical injections are continuous. 

Proposition 1.6. Let 0)),,((  nnmIn fA
n

be an inductive 

system of Hausdorff I-adic algebras and  

.),(lim 0 nnmn fAA Then, for every ideal I of A such that 

the injection )()( InInn AA:i  are continuous, there 

exists an ideal J of A that the injection 

)()( JnInn AA:i  are continuous and J is strictely 

finer than .I  

Proof.  Since )()( InInn AA:i  is continuous, there 

exists, for every integer n 0, an integer 0nr such that 

)( nr
nn Ii is contained in I, so I contains ).(

0

nr
nn

n
Ii


It suffices 

to put ).(
0

nr
nn

n
IiJ 


 

 

2. THE GROUP OF INVERTIBLE ELEMENTS AND 
JACOBSON’S RADICAL 

We endow G(A) with the topology induced by I . The 

map 
1aa  is a homeomorphism of the topological group 

G(A) onto itself. As a different fact, with the Banach case, 

the openess of G(A) is in relation with the radical. 

Proposition 2.1. The following assertions are equivalent. 

(i) G(A) is open. 

(ii) I  RadA. 

(iii) Every maximal ideal of A is closed for .I  
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Notice that if RadA contains I, then G(A) is also closed 

for .I  

The spectrum of an element a of A, denoted SpA(a) is 

{C/a e G(A)}. As a subset of C, SpA(a) is closed. If 

we consider SpA(a) as a subset of A, then we have the 

following, where )(aSpA denotes the closure of SpA(a) in 

),( IA  ; whence de closedness of SpA(a) if ),( IA  is 

Hausdorff. 

Proposition 2.2. Let ),( IA  be an I-adic algebra. Then 


0

,)()(



n

n
AA IaSpaSp for every element a in A. 

Proof. Let y be an  element  of ,)(

0


















n

n
A IaSp we  have 

y =  + b, with  is in SpA(a) and b in .
0

n

nI  Hence y =   

b is in )()( aSpIy A
n
 , i.e., y is in )(aSpA . Conversely, 

let y be an element of )(aSpA  and 0n a positive integer.     

Then  )()( 0 aSpIy A
n

 is not void, so there exist an 

element 0 in SpA(a) and an element 0b  in 0n
I  such that  y 

= 0 + b0. There exist also an element i in SpA(a) and an 

element ib  in in
I  such that ii by  . Thus 

.00 bbii  If ,0 i  then 0bbi   is invertible which is 

contradictory. Hence 0bbi   and y is in 
0

(a)



n

n
A ISp . 

Proposition 2.3. Let A be an algebra, then for every 

element a in A, 










M

AA
e

a
SpaSp

M
,)( where  is the set 

of all maximal ideals of A. 

Proof. Let  be an element of  ,








e

a
Sp

MA then 
e

a
e  is 

not invertible in AM and so is ae  in A. Hence  is in 

SpA(a). For the converse, if  is an element of SpA(a), then 

ae  is not invertible in A and so it is an element of a 

maximal ideal M of A. Hence 
e

a
e  is in MAM. Thus 

e

a
e  is not invertible in AM, i.e.,  is in .









e

a
Sp

MA  

Recall that an algebra is said to be semi-local if it has a 

finite number of maximal ideals. By the previous 

proposition, the spectrum of every element a in a semi-local 

algebra A, is void or finite. 

We  suppose  that ),( IA   is a  Hausdorff I-adic algebra. 

The topology  can  be  defined  by the  metric  d. The  

radius  of  regularity  of  an  element  a,  denoted  r(a),  is  

defined by 
nn

n
adInfar /1

1
))0,(()(


 . One easily checks that 

nn

n
adar /1))0,((lim)(  . 

Remark 2.4. In general, the quantity r(a) is different from 

the spectral radius .
)(


 aSpA

Sup Indeed, consider the algebra 

A = C[[X]] of formal power series. Endow it with the I-adic 

topology defined by I = XC[[X]]. For f(X)=3+X,  r(f(X))=1 

because nXf ))(( is in ,\0 II  for every integer n  0. But 

3
)(


 aSpA

Sup because SpA(f(X)) = {3}. 

By the same argument as in the proof of theorem 9. p. 

12 of ref. [1], we obtain the following results.    

Proposition 2.5. Let ),( IA  be a complete I-adic algebra 

and a an element of A such that r(a)<1. Then )( ae is 

invertible and .)(
1

1





n

naeae   

Corollary 2.5. Let ),( IA   be a complete I-adic algebra 

with unit e. Then, each element a of A with 1)0,( aed , is 

invertible. 

As a consequence, we have the following result. 

Proposition 2.6. Let ),( IA  be a complete I-adic algebra. 

Then G(A) is open; hence ),( IA  is never semi simple. 

Proof. Let a be an element of G(A).Then G(A) contains 

)( Ia . Therefore, by proposition 2.5, )( 1bae  is 

invertible, and G(A) being a group, )()( 1baeaba  is 

also in G(A). Then see proposition 2.1.  

We, of course, do have different I-adic topologies on a 

given algebra A. First notice that, if I and J are two ideals of 

A, then I is finer than J if, and only if, there exists an 

integer  0n  such  that  J  contains nI . Now, consider  the 

algebra C(X)  of  all  continuous, complex  valued  

functions on X, where X is a Haussdorff completely regular 

topological  space. Let  x  and  y  be  two  different  

elements of X. Then, by corollary 2.2 of ref.[3], 

 0)(/)(  xfXCfIx  and  0)(/)(  yfXCfI y  are 

two different maximal ideals of C(X). Hence, 
xI and 

yI are incomparable. The analogous of Johnson’s result 

for a semi-simple Banach algebra is the following: In a 

semi simple algebra A, the discrete topology is the unique 

complete I-adic topology on A. We now give a result where 

semi-simplicity is not involved. 

Proposition 2.7. There exists on an algebra A a unique I-

adic topology which is not discrete and not trivial if, and 

only if: 

i) A admits a unique prime ideal P. 

ii) Each ideal of A contains a power of  P. 

Proof. If P and P' are two prime ideals of A, then by 

hypothesis, 'PP  ; so there exist two positive integers n, 

m  such that P' contains nP and P contains 
mP )'( . Hence P' 

contains P and P contains P', i.e., P = P'. On the other 

hand, since for any ideal I of A PI  , there exists a 

positive integer n such that I contains nP . Whence 

necessity. For the converse, if I is an ideal of A, then P 

contains I and so I is finer than P . Since there exists a 
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positive integer n such that I contains nP , we have P finer 

than I . 

The last proposition applies, in particular, to algebras of 

valuation in which the non zero ideals are the sets ,nP  

,00 n with P the unique maximal ideal. 

 

3. GELFAND TRANSFORMATION  

Concerning the continuity of mutiplicative linear 

functionals, we have the following. 

Proposition 3.1. Let ),( IA  be an I-adic algebra and  a 

multiplicative linear functional. Then  is continuous if, 

and only if, Ker contains I.  

Proof. Suppose that Ker contains I. Let x0 be in A and 

0 . Then )),(( 0  xB  contains )( 0 Ix  . Conversely, 

suppose that I is not contained in Ker. Then, by the 

maximality of Ker, nI  is not contained in Ker, for any 

integer 0n . So .AKerI n  Since   is continuous, there 

exists, for ,0 an integer 0n  such that ),0( B  contains 

).( nI Hence )()()( nn IKerfIA C is contained 

in ),0( B which is absurd. 

Corollary 3.2. Let ),( IA   be an I-adic algebra such that 

G(A) is open. Then every multiplicative linear functional is 

continuous. 

We  consider   the  Gelfand  transformation  .x̂x We 

denote  by  )(# Am   (resp. m(A)) the  set of all 

multiplicative (resp. continuous multiplicative) linear 

functionals on A. Suppose  0)(# Am  and endow 

)),(( # CAmC with the topology defined by the sets 

),,...,,( 1  nfV =  ,1,)()(/)(# nigfAmg ii   

with ,0  n ,...,1 in )(# Am ; as a system of 

neighborhoods of an element f in )(# Am . Here is an 

example where ).()(# AmAm   

Example 3.3. Let  .,A  be a commutative Banach 

algebra  such  that  Rad(A) contains a  non nilpotent 

element  x. In ref. [4], S. Rolewicz  has constructed  a 

sequence  nknka ,, )(  such  that, for every  k, m, n  in  N, 

1, nka  and ;,1,1, mknkmnk aaa    and he has considered 









 



1

,1 ,:)(
n

nnknn kxaAxB . Endowed with the 

usual operations, the convolution product and the norm 

defined by 



1

,)(
n

nnn xx  B is a normed algebra 

containing A and verifying 
#

)(
m

KerBRad


 . This 

algebra admits a maximal ideal M of infinite codimension. 

If we endow it with the I-adic topology defined by M, then 

there is no continuous multiplicative linear functional on B. 

Proposition 3.4. The Gelfand transformation 

),),((),(: # CAmCA I  ,x̂x  is continuous if, and only 

if, ).()(# AmAm   

Proof. By the previous proposition, if  is continuous, then 

Ker contains I. So ),,ˆ( xV contains )( Ix , for every 

.0 Conversely, suppose that there exists a non 

continuous multiplicative linear functional  on A. Then, I 

is not contained in Ker and so is for ,nI  .0n  Hence, for 

every integer ,0n  .AKerI n   For ,0  there exists 

an integer 00n such that ),,0( V contain ).( 0nI But 

.0 IKerII n  So (I) is contained in ).,0( B Hence 

;0)(  I  a contradiction. 

 

4. ENTIRE FUNCTIONS 

Now, we examine the behavior of entire functions. They 

not operate on the whole algebra. 

Proposition 4.1. Let ),( IA  be an I-adic algebra and 


n

n
nzzf )( an entire function, which is not a 

polynomial. The series 
n

n
na converges in A if, and only 

if, a is in I . 

Proof. Sufficiency: Let 0n be the smallest positive integer 

such that 0na is in I. For every positive integers 

,0r 0s and ,0snm  we have                                             

 ,
1100

00 







 




 rmnm

nn
n

sn

rmnm

n
n

mn

n
n

rmn

n
n aaaaa  

which is in .sI  Hence, 
n

n
na is Cauchy in ),,( IA  thus it 

is convergent. Necessity: if 
n

n
na converges in (A,I), 

then there exists an integer 0n such that, for every integers 

0,r  ,0nm  we have  .
00

Iaa
mn

n
n

rmn

n
n  



Consider 

an integer 0nm  such that .010
 m Since 






00 010 mn

n
n

mn

n
n aa is in I, then 

1
1

0

0




m
m a is in I and it 

follows that 
10m

a is in I. 

Example 4.2. Consider the algebra A = C [[X]] of formal 

power series. Endow it with the I-adic topology defined 

by   .XI C By theorem 4.1, a non polynomial series 





0n

n
na on A converges if, and only if, a is in I. 

 

5. ILLUSTRATION 

To illustrate phenomena we encountered we, at last, 

examine them on a very classical example. 
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Example 5.1. Let X be a completely regular Hausdorff 

space. Denote by C(X) the semi-simple algebra of all 

continuous, complex valued functions on X with the usual 

pointwise operations. The closed maximal ideals in C(X) 

are the subsets  ,0)(/)(  xfXfIx C  with Xx ([3]). 

We examine the algebra C(X) endowed with the Ix-adic 

topology x , .Xx Since X is completely regular 

Hausdorff space, )(XCIx  and  ,0n
xI for every integer 

.0n  Hence, x is not trivial nor discrete. Let yx be two 

different elements in X. Then, x and y are incomparable. 

The topology x is not Hausdorff. Indeed, let xy in X. 

Then, there exists a continuous function  ,1,0: Xf  such 

that 0)( xf and .1)( yf So, ,
0


n

n
xIf since for every 

integer ,1n  .x
n If  The group G(C(X)) of invertible 

elements in C(X) is the set  .,0)()/( XyyfXCf  It is 

not open. Indeed, if there exists n  in N such that )1(
0

n
xI is 

contained in G(C(X)), then, for every y in X and every f in 

,xI 1)( yf n  which is not true, because if xy in X,  then 

there exists f in C(X) such that 0)( xf and .1)( yf So, 

.1)()...()(  yfyfyf n As it is known, the nonzero 

multiplicative linear functionals on C(X) are in one to one 

correspondence with the points of X via the relation 

,yy  where ),()( yffy  for )(XCf ([3]). The 

unique nonzero continuous character on C(X) for x is 

.x At last, since xI is a maximal ideal of C(X), a non 

polynomial series  
0n

n
na converges if, and only if, a is 

in .xI  

Example 5.2.  Let A0 be a radical commutative algebra, 

e.g., L1[0,1], the multiplication being the convolution 

operation; .)()(
0

dssgstfgf
t
  A proper ideal I of the 

unitization A  of  A0 is of  the  form  ,00I  where  00 I  

is  an  ideal  of  A0. The  Jacobson   radical of A  is  A0  and   

the group of invertible elements of A is 

  C,/)( 000 AaaAG . It is open, for every I-adic 

topology on A (cf. Proposition 2.1). Next, we remark that 

the unique nonzero character  on A is defined as follows 

.,: 0  aA C  By the theorem 3.1, it is continuous, 

for every topology on A. 

Example 5.3.  Let C(X)   be   the   semi-simple  algebra  

of all  continuous  complex   valued   functions  on   X,  

where X  is    a   completely   regular  Hausdorff   space. 

And  let  A   be   the   unitization  of  a   given   radical   

algebra  A0. Then, the algebra  AXCB  )(  is  not   radical   

and  not  semi-simple. The group of invertible  element     

in B is     C,/,0)(/)( 000 AaaXyyfXCf . 

Consider  on  B  the  I-adic  topology  defined by  the  ideal 

,JII x  where  0)(/)(  xfXCfIx   and  J   an  ideal 

of  A.  The  group  G(B) is  open  if,  and  only  if,  0x  

(cf. Proposition 3.2). Let   be  a  character on B. Then, 

)(XCi  )(resp. Ai is   a   character on C(X)   (resp. on 

A), where ,)(:)( BXCi XC  )0,( ff   and ,: BAiA   

).0,(aa Hence, the nonzero multiplicative linear 

functional on B  are  in  one  to  one correspondence   with 

the points of X  via the relation ,yy   where 

.)(),( 0  yfafy  A character y is continuous if, 

and only if, .xy  
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