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Résumé  
Le ralentissement critique de convergence (CSDE) est l’obstacle majeur dans les simulations numériques de 

grands systèmes physiques. Dans notre cas pour obtenir la distribution de courants électriques sur un réseau de 
résistances aléatoires, au seuil de percolation, par la méthode de relaxation de Jacobi, le nombre d’itérations 
nécessaire pour que le système relaxe vers son état permanent croît plus vite que le volume de ce dernier. Dans 
cet article, nous décrivons la méthode des polynômes orthogonaux formels et commentons nos résultats. Nous 
montrons que le principal avantage de celle-ci est qu’elle ne possède pas de CSDE. Cependant il apparaît un 
nouveau type de ralentissement dû à la difficulté croissante de trouver un vecteur initial y.  
Mots clés: filtration ; critique lente ; relaxation numérique ; polygone de forme orthogonale 

 
Abstract   
The critical Slow down Effect (CSDE) is the major obstacle in the large scale numerical simulations of 

physical systems. In our case, to obtain the current distribution on a random resistor network at the percolation 
threshold, by the Jacobi relaxation method, the number of iterations needed for the system to relax to its steady 
state grows faster than the volume. In this paper, we describe technical details on the formal orthogonal 
polynomials method and comment our results. We show that the main advantage of this method is that there is 
not CSDE. However it appears a new type of slow down by the difficult choice of an initial vector y.  
Keywords: percolation, critical slow down, numerical relaxation, formal orthogonal polynomials.   
 

 
 

he study of physical systems with critical phenomena, has gained 
interest these last decades [1-4]. It is well established that systems, 

with random structure, have properties where scaling laws lead to 
exponents depending strongly on the dimension of the space; and where 
the microscopic details are irrelevant [5]. For example, we can cite the 
diffusion in particular lattice [6], the electrical transport on a random 
resistor network [7], or the mass transport in a porous media [5, 6]. 

In such systems the evaluating of physical quantities using methods of 
numerical simulation based on relaxation algorithms, is confronted to the 
problem of CSDE. This is a serious problem in the computations of 
physical quantities on structures close to singularities. There are 
numerical methods that allow to avoid this CSDE, however, their 
inconvenience is to be specific to a given property [7-10]. 
The main purpose of this work is to apply a method based on the formal 
orthogonal polynomials (or Lanczos-type algorithm), which seems 
enough general and avoids CSDE.  

In exact arithmetic, the number of iterations, to obtain the solution, 
remains limited by the matrix size. Unfortunately, we will see that the 
choice of an arbitrary vector “y”, satisfying  the orthogonally conditions, 
restricts the efficiency of this method. The purpose of the present paper is 
to expose technical details on a new method based on formal orthogonal 
polynomials ideas. This method was used already Friedrichs et al. [11] to 
determine P0(t), the probability of returning to the initial position at time, 
for a walker on percolating systems. 

In this paper we apply the method to the bond percolation on two-
dimensional square lattice, and where is written, at each site, discretised 
Poisson’s equation[30; 31]. The size L of square lattice is times the lattice 
constant a (a=1). There are two types of links connecting neighbouring 
sites: they have either unit conductance with probability p equation[30; 
31]. The size L of square lattice is times the lattice constant a (a=1). There 
are two types of links connecting neighbouring  or  zero conductance  
(link hqing been cut) with propability  (1-p). 

T

A. SARI 
S. MAHAMMED 
Laboratoire de Physique 
Théorique,  Département de 
Physique, Faculté des Sciences, 
Université Aboubekr Belkaïd, 
Tlemcen. 
 
N. GHOUALI 
 A. BENCHAIB 
Département de 
Mathématiques, Faculté des 
Sciences, Université 
Aboubekr Belkaïd, Tlemcen.

  ملخص
الإعاقة الاحراجية للتقارب في الطرق العددية

 تطرح أمر دو شأن في حساب آميات فزيائيةتبالمتكررا
أنشأت عدة  طرق. للمنظمات التي توجد قرب احد مفرداتها

الإعاقة  و لكن عيبها الأآبرعددية  تمكن التخلص من تلك 
هو أنها تختص بتقدير مميزة  معينة  و بهذا الأمر تكون غير

في هذا المقال قمنا بدراسة حول  طريقة أخرى. شاملة
تستخدم متعدد المخارج المتعامدة و يصح أن نقول في أمرها

فعلا يوجد نظرية قوية التي تشير. أنها شاملة و بدون إعاقة
مصفوفة تبقى محدودة إلى قياس التإلى أن المتكررا

 "عالمستخدمة، و لكن وجدنا أن الاختيار الغير المميز للشعا
يعرقل مردود الطريقة حيث يتشكل نوع جديد  من الإعاقة" 

  .                              الاحرجية للتقارب
الإعاقة الإحراجية، استرخاءرشيح،التالمفتاحيةالكلمات 

   .ددي، عجيد أضلع قائمع
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We can rewrite this as: 
),1r(p)r()p1()r(p ijijij −δ−δ−=       (1) 

Let a matrix A, where Aij, matrix element, represent the 
link value between sites i and j, Vi  the voltage on the i-th 
site, and the elements of the vector I are the constraints on 
each node. We apply unit voltage between two bars put on 
opposite edges of the network, and periodical condition on 
the other edges. Then the steady state of the system is 
giving by equation: 

AV =I     (2) 
To solve the above equation, we can write the diffusion 

equation: 
dV/dT = AV-I   (3) 

and the steady state solution of this equation gives the 
solution of equation (2). The discrete form of equation (3) 
is the well know relaxation process in numerical analysis: 

,IV.AV )k()1k( −=+   (4) 
At the percolation threshold, the system not relax to its 

steady state with a number of iterations growing like the 
volume but like wf ddL + , where df  is the fractal dimension of 
the backbone of percolating cluster and dw  is the random 
walk dimension [12], and it is easy to see that d<df+dw. 

The similarity between diffusion and relaxation 
processes enables to understand qualitatively the CSDE. On 
damaged network, at the percolation threshold, during its 
spreading out, the random walk is subject to forced 
crossings, dead arms and winding paths. Consequently, 
when the system size grows, the convergence to the 
solution in equation (4) becomes slower.  

When we study the transport in disordered systems, the 
analytical techniques: effective medium theories [13], 
continuous-time random walks [14], series expansions [14], 
renormalization-group techniques [16] and scaling 
arguments [17], are not sufficient to understand their 
properties. In fact, in much case, these methods have 
provided only qualitative descriptions. 

An other hand Monte Carlo simulations [18] give 
formally good solutions, unfortunately averages must be 
performed over time and cluster configurations, and thus 
the CSDE can occur. There exist methods which avoid the 
CSDE, like matrix transfer methods [7] or Fourier 
acceleration methods [19], but they are ad hoc processes. 

In this paper, we present an approach based on theory of 
formal orthogonal polynomials [20]. A priori, this method 
seems exempt from the CSDE.  

This paper is set out as follows. In section II, the 
method is discussed in detail. The results of calculations on 
the percolating cluster are presented in section III, 
compared with relaxation method and then analyzed. We 
conclude in section IV with a brief discussion of 
significance of our results, also we introduce a qualitative 
representation. 
 
ORTHOGONAL POLYNOMIALS METHOD (OPM) 

Initially the theory of formal orthogonal polynomials 
appear in the papers of Lanczos [21, 22]. In exact 
arithmetic, the Lanczos algorithm would terminate at the 

most (L2)-th recursion [23]. The Lanczos algorithm is based 
on the constructing of a sequence of orthogonal 
polynomials: 

If AV=I is a n linear equations system, where 
∈A  ℜ νξν is symmetric and positive definite, ∈V ℜ ν  and 

∈I  ℜ ν, and considers the functional Φ(V) defined by :  
IXAVV

2
1)V(Φ TT −= , it follows that V= A-1I is the unique 

minimizer of Φ(V) [10]. If V0 and y are two nonzero vectors 
in ∇ν, one way to produce a sequence {Vk} that converges 
to V is to generate a sequence of vectors {rk} defined by 

0k0
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r).A,...,A,1(span)VV.(ArAVIr
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where : 
00 AVIr −=  

and let  
)yA,...,yA,y(span)rA,...Ar,r(span )1k(TT

0
1k

00
−− ⊥ , 

where AT denotes the transpose of A. 
This othogonality condition can be write as: 

.1k,...,0ifor  0)r,yA( k
Ti

−==  
Knowing Pk, rk can be computed by : 

0kk r)A(Pr = , 
and V-k is obtained by:  

01k0k r)A(RVV −−=  
where : 

)(R1)(P 1kk ξξ+=ξ − . 
This is Lanczos method [24]. 
 
Table 1: For the OPM and JRM, the number of iterations per  
 realization needed to reach an accuracy ≤10-7. 

Size 78 136 
P OPM JRM OPM JRM 

0.9 41 79 52 120 
0.8 46 139 64 149 
0.7 49 182 77 Div. 
0.6 54 Div.(*) 80 Div. 
0.55 60 Div. 65 Div. 
0.52 56 Div. 75 Div. 

 (*) The abbreviation Div. means that the number of iterations have much 
more great than the system size. 

The family {Pk} also satisfies a three-term recurrence 
relationship, which can be write as : 

)(Q)(P)(P kkk1k ξξβ−ξ=ξ+  
where : )(Q)(P)(Q 1kkkk ξα+ξ=ξ −

 
with : QU(c/)PU(c 1kk1kk −− ξξ−=α  
and : ).QU(c/)PU(c kkkkk ξ=β  
{Ui} is an arbitrary family of polynomials such that iUi  ,∀  
has exactly the degree i, and c is the linear functional on the 
space of polynomials defined as : 

∑∑
==

+ α=α=ξξ
k

0j
0
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0
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i r)A,yA(r)A,y())(P(c
i . 

There exists various possibilities for computing 
recursively the vectors rk =Pk(A)r0 [25]. They give rise to 
different algorithms. For our application, we shall use the 
method so-called biconjugate gradient method, or the 
BIOMIN method. 
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We give the algorithm that we have used to study the 
current distribution of random resistor networks in two-
dimensions at the percolation threshold :  
- Choose V0, y 
- Set r 0 = I - AV0 = p0; yp~r~ 00 ==  
- For k = 0, ….; compute : 

)Ap,p~/()r,r~( kkkkk =β  

kkk1k pVV β+=+  

kkk1k Aprr β−=+  

k
T

kk1k p~Ar~r~ β−=+  
- If  rk+1  ≠ 0, then compute : 

)r,r~/()r,r~( kk1k1k1k +++ =α  

k1k1k1k prp +++ α−=  

k1k1k1k p~r~p~ +++ α−=  
- Else give the result. 
 
NUMERICAL RESULTS AND DISCUSSION 

At the percolation threshold, the conductance of the 
system is due only to the incipient infinite cluster, and 
consequently this reduces the size of the matrix A. We 
tested the OPM and compared it to the Jacobi relaxation 
method (JRM) [23, 26], for 2-dimensional lattices of size 
78, and 136. Table 1 shows the number of iterations needed 
for OPM and JRM, with different rate of damage (1-p) = q 
= 0.1, 0.2, 0.3, 0.4, 0.45, and 0.48,. The main advantage of 
the JRM is that the code is very simple. However, 
according to table 1, the convergence may be very slow 
compare to the OPM. 
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Figure 1: Plot of the number of iteration versus matrix size,  
for p=0.50 (*) and p=0.85 (+). The using method is OPM. 

 
The number of iterations N, which gives a solution with 

accuracy 10-7, is evaluate on matrix ranged in size from 44 
to 2650. In order to avoid important fluctuations in the 
values, we will keep only matrix in a small range-size for 
each given size of the network (averaging over 20 
configurations). 

 
Figure 2: Plot of the number of iteration versus matrix size, 

 at p=0.50 and for the two methods OPM and JRM. 

 
The OPM is applied at p =pc =0.5 (percolation 

threshold) and p=0.85. In figure 1 the graphs for the 
numbers of iterations versus size of matrix for p=0.5 and 
p=0.85 are shown. We observe that the number of iterations 
increases strongly with the size (103 times as big in our 
case) when p=0.5. But, at the percolation threshold, the 
OPM is faster than JRM as seen in figure 2. 
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Figure 3: The time iteration (in arbitrary unit) versus matrix size, 

at p=0.50 and for the two methods OPM and JRM. 
 
We want to answer at the question: the rapidity of the 

OPM is due to time of one iteration or to number of 
iterations? In figure 3 we notice that the time of one 
iteration versus the matrix-size for the OPM exhibits 
increasing more than for the JRM, while we have an 
increase relatively slower in the iteration-number (see 
figure 2). Therefore, the iteration-number behaviour versus 
the size of the matrix is the main cause for the rapidity of 
the OPM. These observations are corroborated by the plot 
in figure 4, which shows the variation of iteration-number 
per unit of size with the size of the matrix. As seen in this 
figure, the variation decreases exponentially. 
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Figure 4: The iteration number per unit matrix size versus the size 

of matrix at p=0.50 and for the OPM. 
 

A second manifestation of the OPM is represented in 
figure 5. In fact the vector y must verify the linear 
independence of {y, ATy, …, AT(n-1)y}, and we have any 
indication to determine y.  

 
Figure 5: The number of “bad y” versus the size of the matrix. 
The results are averaged over 100 trials. 
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(o) OPM 
at p=0.50 

(*) p=0.85 
(+) p=0.50 

(+) JRM 
(o) OPM 
at p=0.50



A. SARI, S. MAHAMMED, N. GHOUALI, A. BENCHAIB 

 46

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Qualitatively, we represent the space of polynomials (E) and the domains (D), non convexe, in solid curve,  
                                 the regions where the polynomials are orthogonal. The round off error in computation  generate  a  random  
                                 walk in this space (broken line). When the size of the network is small the random walk has little steps (a),  
                                 when the size of the network is large big steps (b). 

 
In our algorithm, we choice randomly the vector y. In 

this latest figure, we show that when the size of the network 
increases, firstly, statistically the rapidity with which we 
obtain a “good” y increases, and this decreases rapidly. We 
think that there is two reasons to explain this behaviour. In 
computer, we use a finite-precision arithmetic, which 
introduces round off error. On the other hand, when the size 
of the network increases, there is a parcelling up of the set 
of vectors y checking the orthogonally conditions. 

That being the case, qualitatively, we assume that when 
we start with a good y, because of round off error a new y is 
obtained. We can represent this by a random walk in 
formal-polynomials-space When the size of network 
increases the jump of the walker is more wide, and this 
effect increases the probability that “y” falls out the 
convergence domain (see figure 6). 
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