ETUDE COMPARATIVE DES STRUCTURES ELECTRONIQUES DES BOROCARBURES ET BORONITRURES DE TERRES RARES

Reçu le 28/04/2002- Accepté le 08/10/2002

Résumé

Les combinaisons du bore et du carbone d'une part, du bore et de l'azote d'autre part, avec les métaux de terres rares conduisent respectivement à la formation de matériaux dans l'état solide de formules $M_x B_y C_z$ et $M_x B_y N_z$ possédant des propriétés structurales et physiques très intéressantes. Les différents composés ont été analysés au moyen de calculs théoriques en utilisant la méthode de Hückel étendue. Les résultats ont montré que ces composés peuvent être décrits comme résultant des interactions des anions $B_y C_z$ et $B_y N_z$ avec un réseau métallique qui n'est pas totalement oxydé.

<u>Mots clés</u>: Etude théorique, Structure électronique, niveau de Fermi, composés de l'état solide.

Abstract

The combinations of boron and carbon, boron and nitrogen with rare earth metals leads to the formation of materials having interesting physical and structural properties. In theses compounds respectively of formula $M_x B_y C_z$ and $M_x B_y N_z$, The non-metal atoms form either two-dimensional networks, or mono-dimensional zigzag chains, or finite linear units of various length. The dimensionality of boron-carbon and boron-nitrogen sub-lattices is related to the average valence electron count (VEC) per light atoms (B, C or N). The bonding properties of rare earth metal boron carbides and rare earth metal boron nitrides compounds are analysed by means of extend Hückel tight-binding calculations. Results indicate that these compounds can be described in first approximation as being built of anionic units interacting with not fully oxidized metallic cations.

<u>Key words</u>: Theoretical study, electronic structure, Fermi level, compounds of solid state.

B. ZOUCHOUNE¹ L. FADEL² F. ZOUCHOUNE³ S.E. BOUAOUD¹ J-F. HALET⁴ J-Y. SAILLARD⁴

¹ Laboratoire de chimie moléculaire de contrôle de l'environnement et des mesures physico-chimiques Département de Chimie Université Mentouri Constantine, Algérie
² Département de Chimie Faculté des Sciences Université de Biskra, Algérie

³Laboratoire de Chimie Appliquée

et de technologie des matériaux Département de Chimie Centre Universitaire d'Oum-El-Bouaghi

⁴Laboratoire de Chimie du Solide et Inorganique Moléculaire Institut de Chimie, Université de Rennes1 Rennes cedex, France

Le bore forme respectivement avec le carbone et l'azote, en s'associant avec les éléments terres rares, deux grandes familles de composés de l'état solide : les borocarbures de terres rares de formule $M_x B_y C_z$ [1], et les boronitrures de terres rares de formule $M_x B_y N_z$ [2]. La notion de terre rare ne se restreint pas aux lanthanides, mais s'étend aux actinides, au scandium ou l'yttrium, c'est-à-dire, dans la majorité des cas, un élément de terre rare trivalent. Les borocarbures de terres rares présentent un intérêt particulier en raison de leurs propriétés mécaniques et électriques exceptionnelles, permettant leurs utilisations dans les domaines de pointe telles que l'industrie aérospatiale et l'électronique. Ces composés sont tous conducteurs métalliques, certains comme $La_5B_2C_6$ étant même supraconducteurs à basse température [3].

Si ces derniers ont fait l'objet d'études intensives depuis de nombreuses années [1], il n'en est pas de même pour les boronitrures de terres rares. En effet, malgré leurs propriétés physiques prometteuses, l'intérêt suscité pour les céramiques est relativement récent et semble être un nouveau domaine pour les chercheurs [2].

RELATION ENTRE L'ARRANGEMENT STRUCTURAL ET LE NOMBRE D'ELECTRONS DE VALENCE

Les arrangements structuraux des composés des deux familles sont étroitement liés au nombre d'électrons de valence associés aux atomes légers (bore et carbone pour les borocarbures de terres rares d'une part, bore et azote pour les boronitrures de terres rares, d'autre part). Les atomes de bore, de carbone et d'azote sont généralement plus électronégatifs que les atomes

ملخص

إن تداخل البور مع الكربون من جهة و البور مع النتروجين من جهة أخرى مع المعادن يؤدي إلي تكوين مركبات الصلبة ذات الصيغ التالية على التوالي M_xB_yN_z و M_xB_yC التي لها خصائص بنيوية وفز يائية مهمة جدا. مختلف هذه المركبات در ست بواسطة طريقة Hückel étendue.

درست بواست طريقة Hucker elendre طريقة المنتخب المنتخب المتحصل عليها أظهرت أن هذه ByCz و ByNz و ByCz مع الشبكة المعدنية التي لم تؤكسد كليةً.

ما الكلمات المفتاحيية: دراسة نظرية، الصيغة الإلكترونية، مستوة Fermi، مركبات الأجسام الصلية. métalliques. Dans le cadre d'une approximation de liaisons purement ionique, on peut considérer que les atomes métalliques transfèrent intégralement leurs électrons de valence, généralement trois, aux réseaux bore-carbone et bore-azote. On peut alors calculer la concentration en électrons de valence (c.e.v.) moyenne des atomes légers. Pour un composé borocarbure de terre rare de formule $M_XB_yC_z$, la c.e.v. est obtenue à partir de l'expression suivante : c.e.v. = (3x + 3y + 4z)/(y + z), de même pour un composé boronitrure de terre rare de formule $M_XB_yN_z$, la c.e.v. est obtenue à partir de l'expression suivante : c.e.v. = (3x + 3y + 5z)/(y + z).

Ceci est quelque peu approximatif puisque l'on néglige les interactions métal-métal ainsi que les transferts de charge par recouvrement des bandes métallique et organique. On néglige aussi le fait que certaines terres rares comme Ce ou Th présentent parfois des états d'oxydation IV et peuvent donc fournir 4 électrons aux atomes légers. Mais cela présente néanmoins l'avantage d'établir une relation entre la structure et le compte électronique des borocarbures et les boronitrures de terres rares. Un ensemble non exhaustif de ces derniers, caractérisés par diffraction des rayons X sur poudre ou monocristal est répertorié dans les tableaux 1 et 2.

Les borocarbures de terres rares peuvent être groupés en trois grandes familles selon la façon dont les atomes de bore et de carbone s'arrangent entre eux. La première est constituée des composés dont la c.e.v. est proche de 4, et adoptent un arrangement bidimensionnel d'atomes légers. Elle est faite alternativement de feuillets métalliques et de feuillets de bore et de carbone. Parmi ces composés lamellaires, on mentionnera ceux de type MB₂C (YB₂C dont la c.e.v. = 4,33). L'arrangement structural de YB₂C est illustré sur la Figure 1a [7].

Figure 1: Arrangements structuraux de YB₂C (a), YBC (b) et $Ce_{10}B_9C_{12}$ (c).

La deuxième famille est constituée de composés dans lesquels les atomes non- métalliques forment cette fois des systèmes infinis mono-dimensionnels s'insérant dans la trame métallique. Ces systèmes bore-carbone sont en fait des chaînes d'atomes de bore en zig-zag branchées par des atomes de carbone. Ces composés sont observés pour une c.e.v aux environs de 5 obtenus par rupture de liaisons ce qui conduit à une diminution éventuelle de la dimensionalité du réseau organique. Des composés de type MBC dont la c.e.v. est de 5 font partie de cette catégorie. L'exemple de YBC l'un de ces types structuraux est représenté sur la figure 1b [4c].

Lorsque l'on accroît encore la teneur en élément métallique, la c.e.v. augmente et on observe alors la coupure des chaînes mono-dimensionnelles infinies et la formation d'entités B_mC_n "moléculaires" de plus en plus courtes ($1 \le m + n \ge 13$). Dans cette famille de composés où la c.e.v. est supérieure ou égale à 5, les atomes métalliques s'arrangent en un réseau tridimensionnel de facon à former des cavités où viennent se loger les chaînettes de bore et de carbone. Ces chaînes sont plus ou moins longues et distordues. Le nombre d'atomes varie de m+n = 2 (C₂) à m+n = 13 (B₅C₁₃), entités rencontrées respectivement dans Ce₅B₂C₆ [1] et Ce₁₀B₉C₁₂ [16] (Fig. 1c). Tandis que les composés boronitrures de terres rares dont leurs c.e.v. est supérieure à 5 se présentent en une seule famille qui correspond à la troisième catégorie des composés borocarbures de terres rares, du fait que l'azote possède un électron de plus par rapport au carbone. Ceci conduit à la formation de petites entités moléculaires comme mentionné sur le tableau 2, où on observe que la taille des entités boreazote diminue chaque fois que la c.e.v. augmente. En fait, un accroissement de celle-ci équivaut au peuplement de niveaux antiliants du réseau bore-azote et par conséquent, une diminution des contacts entre atomes légers.

Type structural	c.e.v. ^a	Réseau B-C	B/C]	Réf.		
Réseaux bidimensionnels						
LaB ₂ C ₄ Ce, Ho, Er	4.17	2/∞-(2B4C)	0.5	4		
LaB ₂ C ₂ Y-Lu	4.25	2/ _∞ -(2B2C).(4B4C)	1.	5		
ScB ₂ C ₂	4.25	2/ _∞ -(2B3C).(4B3C)	1.	6		
YB ₂ C Sc, Tb-Lu	4.33	2/ _∞ -(2B2C).(5B2C)	2.	7		
ThB ₂ C Ce, U(h.t.), Pu	4.33	2/∞-(6B).(6B(3C))	2.	8		
UB ₂ C(b.t.)	4.33	2/∞-(6B(2C))	2.	9		
Chaînes ran	ıifiées n	nono-dimensionnelles				
YBC Gd, Dy, Ho, Er	5.00	$1/_{\infty}$ -[B ₂ C ₂]	1.	4c		
ThBC	5.00	$[B_2C_2]$	1.	10		
UBC Np, Pu	5.00	$[B_2C_2]$	1.	11		
UB _{0.78} C _{1.22}	5.11	$[B_2C_2]$	0.64	12		
UBN	5.50	$1/_{\infty}$ -[B ₂ N ₂]	1.	13		
Th ₃ B ₂ C ₃	5.4	[B ₂ C ₂][C]	0.75	14		
Chaînes in	finie m	ono-dimensionnelles				
et chaînettes de dimension finie						
Gd4B3C4	5.8	$[BC_2][BC_\infty]$	0.66	16		
Chaînettes de dimension finie						
La ₁₅ B ₁₄ C ₁₉	4.94	$[B_4C_7][B_5C_6]$	0.74	15		
Ce ₁₀ B9C ₁₂ La	5.00	$[B_5C_8][B_4C_4]$	0.75	16		
Ce5B4C5	5.22	[B ₄ C ₄][B ₃ C ₃][BC ₂][C]	0.8	17		
La10B9C6	5.40		1.5	15		
$U_5B_2C_7$	5.44		0.29	8		
Ce5B2C6 La, Ho	5.63	[BC ₂][C ₂]	0.33	1c		
La ₅ B ₂ C ₆ Pr, Ce	5.63	[BC3][C]	0.33	19		
Sm5B2C5	5.67	[BC ₂]	0.5	20		
Sc ₂ BC ₂ Gd	5.99	[BC ₂][C]	0.4	19		
Lu3BC3	6	[BC ₂][C]	0.33	18		

<u>**Tableau 1</u>**: Récapitulatif des composés borocarbures de terres-rares caractérisés par diffraction des rayons X sur poudre ou monocristal. ^a : *Compte observé expérimentalement.*</u>

Type structural	c.e.v. ^a	Réseau B-N	B/N	Réf.
PrBN ₂ La, Nd, Sm, Gd	5,33	[N ₃][BN ₃]	0.33	2c
UBN	5,50	$[B_2N_2]$	0.33	20
$Ce_3B_2N_4$ La, Nd, Pr	5,83	$[B_2N_4]$	0.5	21
Ce ₁₅ B ₈ C ₂₅ La	5,88	[BN3] [N]	0.4	22
La15 B8 N19O8	6,06	[BN2][N]	0.33	23

<u>**Tableau 2:**</u> Composés boronitrures de terres-rares caractérisés par diffraction des rayons X sur poudre ou monocristal.

^a : Compte observé expérimentalement.

Nous nous sommes particulièrement intéressés à l'étude théorique de certains composés appartenant à la troisième catégorie de borocarbures et de certains composés boronitrures. Les calculs ont été effectués à l'aide de la méthode de Hückel étendue [20], dans l'approximation des liaisons fortes [21].

ETUDE COMPARATIVE ENTRE M₃B₂N₄ ET M₅B₂C₆

Structure cristallographique

Pour les composés boronitrures de terres rares M₃B₂N₄ (M = Ce, Nd et Pr), nous envisageons l'étude du composétype Ce₃B₂N₄ (Fig. 2a) qui cristallise dans le groupe d'espace Immm- D_{2h}^{25} (N° 71) avec les paramètres de maille suivants : a = 3,565 Å ; b = 6,312 Å; c = 10,713 Å et z = 2[24]. les distances métal-métal varient de 3,56 à 3,84 sont comparables à celles observées dans l'élément métallique [26]. Les distances B-B et B-N sont respectivement de l'ordre de 1,78 Å et 1,46 Å. La figure 2b montre une cage métallique biprismatique triangulaire encapsulant une entité B₂N₄ où les distances M-B varient de 2,68 Å à 2,97 Å et les distances M-N varient de 2,43 Å jusqu'à 2,57 Å. Les composés M5B2C6 avec les phases types La5B2C6 cristallise dans le groupe d'espace $P4/ncc-D_{4h}^{8}$ (N°130) avec les paramètres de maille suivants : a = 8.59 Å, c = 12.398 Å et z = 4 [18].

<u>Figure 2</u>: Arrangement structural de $Ce_3B_2N_4$ (a) et environnement métallique de l'entité B_2N_4 (b).

Dans tous les composés M₅B₂C₆, le sous-réseau métallique, peut être décrit tout d'abord comme résultant de l'empilement de couches métalliques bidimensionnelles.

La nouvelle phase synthétisée par Mattausch [18] et ses collaborateurs présente un arrangement métallique $La_5B_2C_6$ identique à celui de $Ce_5B_2C_6$. Par contre, les atomes de bore et de carbone se regroupent en chaînettes (C-B-C-C) distordues (angle de pliage : $159(1)^\circ$) encapsulées dans des cavités métalliques antiprismatiques à base carrée bicoiffées avec des distances de liaisons C-C et B-C de l'ordre de 1,31 Å et 1.64 Å respectivement (Fig. 3a). A la

différence de Ce₅ B_2 C₆, la phase La₅ B_2 C₆ ne renferme pas d'altères C₂ comme montré sur les figure 3b.

<u>Figure 3</u> : Structure de La₅B₂C₆ (b) et structure métallique de l'entité moléculaire BC₃ (a).

En tenant compte de la stœchiométrie, la formule semidéveloppée de $La_5B_2C_6$ peut s'écrire : $La_5(BC_3)_2$.

On remarque dans les deux types de composés que les environnements métalliques des entités moléculaires sont semblables, ce qui laisse prévoir des modes de liaisons similaires un même type d'interactions entre les atomes métalliques et les atomes non-métalliques dans les matériaux borocarbures et boronitrures de terres rares.

Analyse théorique

a) Le réseau bore-carbone

Les distances inter-chaînons BC₃ sont relativement longues, et supérieures à 3,43 Å, distance la plus courte observée entre atomes de bore et de carbone de chaînes voisines. De même, de longues distances inter-entités B₂N₄ de 3,56 Å sont observées. De ce fait, les interactions interentités moléculaires sont négligeables. Les niveaux discrets d'énergie calculés pour chacun des entités moléculaires BC₃ pour La₅B₂C₆ et B₂N₄ se transforment alors en bandes étroites. Les densités d'états totales des réseaux nonmétalliques résultent de la superposition des contributions dues aux chaînettes BC₃ et des états de B₂N₄, qui sont montrées respectivement sur les figures 4c et 5c. Rappelons qu'un diagramme de densité d'états N(E) d'un matériau représente le nombre de niveaux orbitalaires par maille élémentaire en fonction de l'énergie *E*.

b) Réseau métallique

Les courbes de densité d'états des réseaux métalliques avant interaction pour les deux types de matériaux en l'occurrence les borocarbures et les boronitrures de terres rares sont représentées respectivement sur les figures 4a et 5a. On remarque de grandes similitudes entre les deux courbes. Elles se dispersent entre 0 et -10,5 eV, cet étalement relatif indique des interactions significatives métal-métal, en accord avec les distances observées dans les matériaux M₃B₂N₄ et M₅B₂C₆ qui sont comparables à celles rencontrées dans l'élément métallique.

c) Structure électronique des matériaux $M_x B_y C_z$ et $M_x B_y N_z$

Le réseau organique formé de chaînes de bore et de carbone d'une part avec le réseau formé des entités boreazote de l'autre se combinent avec le réseau métallique pour donner lieu respectivement à des composés ternaires $M_x B_y C_z$ et $M_x B_y N_z$ dont la densité d'états résultent de

<u>Figure 4</u>: Densité d'états du sous-réseau métallique avant interaction (a); densité d'états du composé $Ce_3B_2N_4$: totale (en pointillé) et contribution métallique (en trait plein) (b); densité d'états du sous-réseau bore-azote avant interaction (c).

<u>Figure 5</u>: Densité d'états du sous-réseau métallique avant interaction (a); densité d'états du composé $La_5B_2C_6$: totale (en pointillé) et contribution métallique (en trait plein) (b); densité d'états du sous-réseau bore-carbone avant interaction (c).

l'interaction de ces deux sous-réseaux. Pour le composé La₅B₂C₆ par exemple, la courbe de densité d'états totale se sépare grossièrement en deux parties (Fig. 5b). La partie inférieure, située en-dessous de -11eV, dérive principalement des états bore-carbone des chaînons BC3 qui ont faiblement interagi avec les états métalliques. Elle ressemble beaucoup à la densité d'états du réseau borecarbone avant interaction. Seul le pic le plus important, centré autour de -12,5eV, présente quelque caractère métallique significatif, traduisant quelque donation électronique des chaînons organiques vers le réseau métallique (voir projection métallique présentée sur la Fig. 5b). L'interaction du réseau métallique avec ces états borecarbone situés entre -11,0 et -13,8eV avant interaction, entraîne une légère stabilisation de ces derniers. La partie

supérieure n'est pas seulement le résultat de la superposition des niveaux métalliques avec les niveaux π^* antiliants du réseau organique. Le déplacement du centre de gravité de la bande *d* métallique et son élargissement traduisent une interaction assez importante entre les réseaux métallique et organique.

Le niveau de Fermi, situé généralement aux alentours de -9,50eV, traverse le bas de la bande à caractère métallique prépondérant. La présence d'un pic 50% métal-50% borecarbone au bas de la bande de conduction vers -10,5eV est à remarquer. Ces mêmes constatations sont observées au niveau de la densité d'états des matériaux boronitrures (Fig. 4b), la seule différence résidant dans la localisation du pic à caractère prédominant en bore-azote centré autour de -14eV et légèrement déstabilisé par les états métalliques, qui, par

d'exemple, analysé les courbes CO-OP (Crystal Orbital pour Population) Overlap certaines liaisons entre les atomes métalliques, les atomes légers et les interactions métalmétal. Les liaisons M-B sont longues (de l'ordre de 2,9 Å) et. par conséquent. les populations de recouvrement M-B sont faibles. mais positives au niveau de Fermi, comme montré sur la figure 6. Une augmentation du nombre d'électrons les renforcerait puisque des états liants M-B sont observés jusqu'à -5eV. Les populations de recouvrement M-C et M-N sont plus importantes en revanche (Tab. 3 et 4), et atteignent leur maximum pour le compte d'électrons observé expérimentalement. Les populations M-M sont positives jusqu'à -8eV, elles sont faibles mais non négligeables. La majeure partie de ces populations de recouvrement électronique est due aux niveaux liants métal-métal et métal-ligand occupés qui forment le bas de la bande de conduction. Une augmentation du nombre d'électrons jusqu'à -5,6eV favoriserait les interliantes actions M-M et conduirait à la diminution des populations de recouvrement, c'est-à-dire un raccourcissement des longueurs de liaisons métal-métal (Tableaux 3 et 4).

Nous

avons.

à

titre

conséquent, est situé relativement plus bas que son correspondant dans le matériau borocarbure, ceci en raison de la différence des électronégativités entre les états d'azote et ceux du carbone. On remarque aussi que le niveau de Fermi est légèrement déplacé vers le haut et situé à -9,30eV. La covalence rencontrée entre les états métalliques et les états bore-azote se traduit par la participation non négligeable des atomes métalliques dans la bande de valence bore-azote et inversement, une participation boreazote dans la bande de conduction métallique. Ces degrés de covalence notable sont d'ailleurs illustrés par les charges nettes calculées pour les différents composés :

nettes calculées pour les différents composés : $[La_5B_2C_6]$: $(La^{1,11+})_5 (BC_3^{2,77-})_2$ $[Ce_5B_2C_6]$: $(Ce^{1,33+})_5 (BC_2^{2,57-})_2 (C2^{1,77-})$ $[Ce_3B_2N_4]$: $(Ce^{1,80+})_3 (B_2N_4^{4,40-})$

Nombre d'électrons de valence par métal	1	2	3ª	4
Nombre d'électrons Par maille élémentaire	140	160	180	200
Niveau de Fermi (eV)	-12.23	-11.85	-9.61	-8.72
Populations de recouvrement				
M-B (2,93 Å)	0.04	0.05	0.05	0.09
M-C (2,81Å)	0.18	0.22	0.23	0.23
M-M (3,67- 3,85 Å)	0.02	0.02	0.03	0.04
M-M (3,67- 3,85 Å)	0.03	0.03	0.05	0.06

<u>Tableau 3</u>: Populations de recouvrement pour différents compte du composé borocarbure de terre rare La₅B₂C₆.

^{*a*} : Compte observé expérimentalement.

Nombre d'électrons de valence par métal	1	2	3ª	4
Nombre d'électrons Par maille élémentaire	58	64	70	76
Niveau de Fermi (eV)	-13.38	-13.01	-9.36	-8.12
Populations de recouvrement				
M-N (2,93 Å)	0.04	0.05	0.05	0.09
M-C (2,81Å)	0.13	0.15	0.16	0.14
M-M (3,67- 3,85 Å)	0.02	0.02	0.03	0.04
M-M (3,67- 3,85 Å)	0.024	0.026	0.029	0.038

<u>**Tableau 4:**</u> Populations de recouvrement pour différents compte du composé boronitrure de terre rare Ce₃B₂N₄.

^{*a*} : Compte observé expérimentalement.

CONCLUSION

L'analyse théorique des borocarbures de terres rares $M_x B_y C_z$ et boronitrures de terres rares $M_x B_y N_z$ nous a permis de mettre en évidence une covalence importante entre les entités moléculaires non-métalliques et leur hôte métallique. Cette covalence résulte d'une donation électronique importante de certaines orbitales donneuses bore-carbone vers le réseau métallique et d'une légère rétrodonation des niveaux métalliques occupés dans des orbitales acceptrices des entités moléculaires. C'est d'ailleurs cette covalence qui est, pour une part importante, à l'origine du caractère plus ou moins liant des contacts métal-métal, via un phénomène de couplage à travers les liaisons (through-bond interaction) : les états constituant le bas de la bande d du sous-réseau métallique se mélangent de façon liante aux états occupés anioniques et confèrent à ceux-ci un certain caractère liant métal-métal. Nous avons là des exemples de composés de coordination en chimie de l'état solide.

REFERENCES

- [1]- a) Bauer J., Halet J.-F., Saillard J.-Y., Bauer, Coord. Chem. Rev., 723 (1998), p. 178. b) Halet J.-F., <u>in</u> Contemporary Boron Chemistry; Davidson M.G., Hughes A.T., Marder T.B., Wade K. Eds.; Royal Society of Chemistry : Cambridge, (2000), p. 514. c) Bauer J.; Bars O., J. Less-Common Met., 95, (1983), p. 267.
- [2]- a) Rogl P., Klesnar H., J. Am. Chem. Soc., 98, (1992), p. 99.
 b) Markovskii L., Vekshina N.V., Pron G.F., Zh. Prikl. Khim., 38 (1965), p. 245.
- [3]- Lahrech M., Thèse de l'Université de Rennes I, (1990).
- [4]- a) Smith P.K., Gilles P.W., J. Inorg. Nucl. Chem., 29, (1967), p. 375. b) Fishel N.A., Eick H.A., J. Inorg. Nucl. Chem., 31 (1969), p. 891. c) Bauer J., Nowotny H., Monatsch. Chem., 102, (1971), p. 1129. d) Bauer J., Debuigne J., C.R. Acad. Sci., sér. C, 274, (1972), p. 1271. e) Breant T., Pensec D., Bauer J., Debuigne J., C.R. Acad. Sci.,

série C, 287, (1978), p. 261. f) Bauer J., Bars O., Acta Crystallogr., B36, (1980), p. 1540.

- [5]- Smith G.S., Johnson Q., Nordine P.C., Acta Crystallogr., 19, (1965), p. 668.
- [6]- a) Réf. 3c. b) Nowotny H., Boller H., Zwilling G., Special Publication, 364, Solid State Chemistry, National Bureau of Standards, Proc. 5th Mater. Res. Symp., (1972). c) Bauer J., Debuigne J., J. Inorg. Nucl. Chem., 37, (1975), p. 2473. d) Bauer J., J. Less-Common Met., 87 (1982), p. 45.
- [7]- a) Rogl P., Fischer P., J. Sol. State Chem., 78, (1989), p. 294.
 b) Bauer J., Ansel D., Bonhomme F., Gosselin Ph., J. Less-Common Met., 157, (1990), p. 109.
- [8]- Rogl P., Bauer J., Debuigne J., J. Nucl. Mat., 165, (1989), p. 74.
- [9]- Rogl P., J. Nucl. Mat., 80, 1979, p. 187.
- [10]- Loth L., Nowotny H., Benesovsky F., Rudy E., Monatsch. Chem., 92, (1961), p. 794.
- [11]-Rogl P., Résultats non publiés.
- [12]- Rogl P., 10th International Symposium on Boron, Borides and Related Compounds, Albuquerque, New Mexico, USA, 27-30 Août (1990).
- [13]-Rogl P., J. Nucl. Mat., 79, (1979), , pp. 154-158.
- [14]- a) Lahrech M., Thèse de l'Université de Rennes I, (1990). b) Gougeon P., Halet J.-F., Ansel D., Bauer J., Z. Kristallogr, 211, (1996), p. 822.
- [15]-a) Bonhomme F., Gosselin P., Ansel D., Bauer J., Etude Cristallographique du Système Ce-B-C (Projet de fin d'études d'ingénieurs, 5° année de l'option Génie Physique), INSA Rennes, (1988). b) Gougeon P., Halet J.-F., Ansel D., Bauer J., Z. Kristallogr, 211 (1996), p. 823.
- [16]- a) Bauer J., AIP Conference Proceedings 231., Albuquerque, New Mexico, USA, 27-30 Août (1990). b) Gougeon P., Halet J.-F., Ansel D., Bauer J., Z. Kristallogr, 211 (1996), p. 825.
- [17]-Bauer J., Potel M., Gougeon P., Padiou J., Noël H., Proc. of the IXth Int. Conf. on Solid Compounds of Transition Elements (Royal Soc. of Chem. Dalton Division), Oxford, G-B, 4-8 Juillet (1988).
- [18]- Oeckler O., Bauer J., Mattausch H., Simon Z., Anorg. Allg. Chem., (2001).
- [19]- Bidaud E., Hiebel K., Hoffmann, R.-D., Pöttgen R., Jardin C., Gautier R., Gougeon P., Saillard J.-Y., Halet J.-F., J. Solid. State. Chem., 154 (2000), p. 286.
- [20]- Pogl P., 10th International Symposium on Boron, Borides and Related Compounds, Albuquerque, New Mexico, USA, 27-30 Août (1990).
- [21]- a) Rogl P., Klesnar H., Fischer P., J. Am. Ceram., 73 (1990), p. 2634.
- [22]-L'Haridon P., Gaudé J., Lang J., J. Solid. State. Chem., 59 (1985), p. 143
- [23]- L'Haridon P., Gaudé J., 9th European Crystallographic Meeting, Turin, Septembre (1985).
- [24]- Hoffmann R., J. Chem. Phys., 39 (1963), p. 1397.
- [25]- a) Whangbo M.-H., Hoffmann R., Woodward R., B. Proc. R. Soc. Lond., A366 (1979), p. 23. b) Whangbo M.-H., Hoffmann R., *J. Am. Chem. Soc.*, 100 (1978), p. 6093.
- [26]- Greenwood N.N., Earnshaw A., Chemistry of the Elements, Pergamon Press, (1984), p. 1104.