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Abstract 

This paper presents a comparison of the two techniques: arithmetic means and expertons, used for 
aggregation of experts’ judgments relative to basic events of fault trees. Valuations as confidence 
intervals included in [0, 1] have been considered. First, bounds are numbers to one decimal; next, 
numbers belonging to [0, 1]. In this last case, R+_expertons concept is used, with a counter-expertise 
form proposed. The means technique is well known in practice, but as fault tree is a logical diagram 
built by "AND" and "OR" gates, i.e. nonlinear operators, its use leads to wrong results and expertons 
technique should be used. 
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Résumé 

Le présent article présente une comparaison de deux techniques : moyennes arithmétiques et 
expertons, utilisées pour l’agrégation des jugements d’experts relatifs aux événements de base des 
arbres de défaillance. Des valuations en intervalles de confiance inclus dans [0, 1] ont été considérées. 
Dans un premier temps, les bornes sont des nombres à une décimale, puis dans un autre, des nombres 
appartenant à [0, 1]. Dans ce dernier cas, le concept des R+_expertons est utilisé avec proposition d’une 
certaine forme de contre-expertise. La technique des moyennes est bien connue en pratique, mais 
comme l’arbre de défaillance est un diagramme logique construit avec des portes   "ET" et  "OU", i.e., 
des opérateurs non linéaires, son utilisation conduit à des résultats erronés et delà, la technique des 
expertons devrait être utilisée. 

Mots clés: Quantification Floue d’un Arbre de Défaillance, Agrégation, Moyenne 
Arithmétique, Experton. 

 
 

 

 

n conventional Fault Tree (FT) analysis, calculation of the Top Event 
(TE) probability is carried out from the probabilities of Base Events 

(BE), which are treated as exact values. However, for many systems, it is 
often difficult to evaluate these probabilities from past components 
failures, either because of the lack of sufficient statistical data due to the 
fact that failures are rare events, or because of the change in systems 
environment. Furthermore, in the design phase new components whose 
probability of failure is needed often does not exist and must be estimated 
[1] [2]. In such situations, the use of experts’ judgments becomes more 
and more an acceptable part in the risk assessment process and more 
effort is deployed to arrive to the best possible result. In particular, the 
way in which these judgments can be combined has been widely treated. 
As a result of this work there is no unique mode of aggregation that 
would be satisfactory in all instances [12]. 

The weighted average method, belonging to the compromise mode, is 
often encountered in theory decision and risk assessment to aggregate 
criteria. This is even the only attitude considered as rational by a number 
of researchers [3] [11]. It considers the experts’ opinions in a more 
statistical way, i.e., as random variables, and is based on convex weighted 
sums (i.e., mixtures). The simplest form, corresponding to equal weights, 
is the ordinary Arithmetic Mean (AM), which will be dealt with in this 
paper. Although AM allows very simple calculations, its use with non-
linear functions cannot be justified and would lead to wrong results [4] 
[14]. In particular, since FT is a logical diagram  with “AND” and “OR” 
gates, i.e., its probability function is not linear, it should be necessary to 
employ another alternative to AM. Expertons technique due to  Kaufmann 
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  ملخص
ت ھذا المقال یعرض مقارنة بین تقنیتین: المعدلا

الوسطیة و الاكسبرتونات، استعملتا لدمج أحكام خبراء 
متعلقة بالأحداث العنصریة لأشجار الخلل. تقدیرات في 

] استعملت. أولا، 1،  0شكل مجالات ثقة محتواة في [
بحدود من أعداد برقم واحد وراء الفاصلة؛ ثانیا، من 

]. في ھذه الحالة الأخیرة، 1،  0أعداد تنتمي للمجال [
+ـاكسبرتونات استعمل، مع اقتراح شكل من حمفھوم 

أشكال الخبرة المعاكسة. إن تقنیة المعدلات معروفة جدا 
عملیا، غیر أنھ بما أن شجرة الخلل ھي بیان مكون من 

، أي معاملین غیر خطیین، فان ’أو’و ’ و’أبواب 
استعمالھا یؤدي إلى نتائج غیر صحیحة، ومن ثم وجب 

  ت.استعمال تقنیة الاكسبرتونا

: التكمیم الغامض لشجرة الخلل، الكلمات المفتاحیة
  الدمج، المعدل الحسابي، الاكسبرتون.
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and GIL Aluja [5, 6] seems more rigorous than AM when 
dealing with non-linear operators as the case of FT. Indeed, 
contrary to AM, expertons have the advantage to keep 
different judgments about probabilities of BE without 
deformation, and calculation of the top event experton is 
carried out level by level according to a hendecadarian 
scale. Thus, the entropy is made to fall later by calculation 
of mathematical expectation of this final experton, which 
will be considered in decision-making. 

The main purpose of this paper is to present the results 
of a comparison of AM and expertons techniques which are 
used separately to aggregate valuations as Confidence 
Intervals (CI) originating from experts. The first section 
addresses the representation of expert’s knowledge using 
CI, a particular case of fuzzy numbers. Then we consider 
theoretical formulations of combining theses intervals by 
AM and expertons. Intervals bounds considered are either 
numbers to one decimal or small numbers belonging to [0, 
1]. In this last case corresponding to real values, the 
R+_experton concept is used with a counter expertise form 
we have proposed. Lastly, a section addresses numerical 
results obtained and some comments. 

 
1. REPRESENTATION OF EXPERTS’ JUDGMENTS 

Fuzzy sets theory has been developed to deal with fuzzy 
phenomena [15]. In particular, it offers an adequate 
framework that explicitly takes into account the lack of 
precision of the expert’s knowledge. Thus, a vague 
response of an expert like “the probability of failure is 
between 0.45 and 0.55, and is perhaps around 0.5” can be 
well represented by the possibility concept, i.e., a fuzzy set 
defined in probability space [8, 13]. Explicitly, the possible 
values as described by the membership function of the 
fuzzy set are ordered according to their compatibility with 
the true value (s) of the probability. The simplest form of 
this representation is the CI defined as an interval that 
contains all the possible values of the probability with a 
level of confidence that the true value of this probability 
may exist within the interval [7] (see figure 1). The 
intervals with great possibility correspond to levels near to 
unity. It has been shown that the reliability or failure 
function based on the concept of possibilistic failure rates 
can be well manipulated by CI corresponding to any degree 
of possibility [2].  

 

 

Figure 1 : -level confidence interval. 
 
The symbolic representation of a CI at -level can be 

written as: 

 ααα baI ,        (1) 

This way of expressing knowledge is simpler and more 

natural than giving a point-value. Of course, allowing for 
imprecision reduces the uncertainty of the assessment, but 
imprecise statement are always safer than precise ones [4]. 
For a CI provided by an expert in order to locate the 
“probability” of a BE, we do not take into account the level 
of confidence of the CI. Thus, the representation we adopt 
is: 

  )(*
*,~ i

i ppp         (2) 

where p* et p* are valuations (i.e., subjective probabilities).       
   
2. CALCULATION OF THE CI OF THE TE 

To calculate the TE probability, the method of the 
Simple Structure Function (SSF) can be used [9]. Assuming 
that we have determined all the minimal cuts Cj (j=1,m) of a 
FT, and let xi be the state variable associated to the BE ei 
(i=1, n), the structure function of the FT is: 


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m

j
jCxφ
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where:                           Cj  = 
 ji

ij
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Taking into account the idempotence property: xi.xi = xi, 
(3) can be reduced to a simple form Sx whose major 
advantage is to allow a direct calculation of the probability 
of the TE using a simple replacement of each state variable 
xi by the corresponding probability pi. We find: 
PS(p)  PS( p1,  p2, ..., pn)  S p1,  p2, ..., pn)  S p)  (4) 

An important property of (4) is the increasing monotony 
expressed as: 

((p)   (q))  ( PS(p)  PS(q))    (5) 

where: (p)   p1,  p2, ..., pn) and (q)  q1,  q2, ..., qn);  : 
domination sign,  i, pi    qi. 

If we consider now for each BE ei (i=1, n) valuation as 

CI  iii ppp *
* ,~  , p*i  p*

i , the monotony property is written 

as: 

((p* 1, p* 2, ..., p* n )   ( p*
 1, p*

 2, ..., p*
 n ))  (P* S  P*

S) (6) 

Expression (6) justifies clearly the feasibility of the 
calculation of the CI of the TE from the CIs of BE.  The 
calculation of the CI of the TE using Sx is carried out as 
follows: first, we replace the state variables of Sx by 
lower bounds of fundamental CI; next, by upper bounds of 
these intervals. We obtain: 
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3. AGGREGATION TECHNIQUES 

3.1. Arithmetic Means technique 

Assuming that for a given BE ei (i=1,n), each expert 

provides a CI   )(*
*

)( ,~ i
kk

i
k ppp  , p*k  p*

k ; k=1, r, with r is 

the number of experts. The AM of these r intervals is: 
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Explicitly: 
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So, the CI of the TE is given by: 

   )(),()(),()(
~ *

*
*

* mmpPpPpP SSSSS     (9) 

 
3.2. Expertons Technique 

3.2.1. CI having bounds belonging to J={0, 0.1, 0.2, 
.., 0.9, 1}  

To help experts in their estimation, we suggest to them a 
semantic scale with 11 levels as shown in table 1.  

Valuation Semantic correspondence 

1 Failing 

0.9 Practically failing 

0.8 Nearly failing 

0.7 Quite failing 

0.6 Rather failing than reliable 

0.5 Neither failing nor reliable 

0.4 Rather reliable than failing 

0.3 Quite reliable 
0.2 Nearly reliable 

0.1 Practically reliable 

0 Reliable 

Table 1: Experts’ valuations in J. 

The expert can provide either a number belonging to the 
set J or an interval with bounds belonging to the same set. 
If we consider, for a BE ei (i=1,n), r experts each of them 

provides a CI   )(*
*

)( ,~ i
kk

i
k ppp  , p*k  p*

k  (k=1, r), the 

following stages allow to build the corresponding experton: 
 Statistic: it is carried out on the upper bounds p*k and on 
the lower bounds. Thus, for each scale level we obtain the 

interval: jS
~

[S*j, S*
j](i); j J  {0, 0.1, 0.2, ...,0.9,1}; j  

J : S*j  S*
j.  

 Normalisation: admitting that the statistic constitutes a 
low probability, we normalize frequencies dividing by 
the number of experts. We obtain: 
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 Complementary accumulation: starting from the level 
j=1, we find the cumulative complementary function or 
“the experton”. For a level v, we have: 
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 Note that the interval )(
~
* vF is not a probability because 

it does not satisfy all the axioms of the probability theory, 
i.e., Borel-Kolmogorov axioms, there are only the bounds 
F*(v) and F*(v) that give by accumulation the unity [6]. The 
experton conception enables it to maintain the CI disorder. 
Indeed, the representation of their bounds with a cumulate 
function materializes clearly their weights in “probabilistic” 
point of view. All expertons have the following monotony 

property: 

      )(),()'(),'()'(,1,0)',( *
*
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That is to say: 
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3.2.2. CI having bounds belonging to [0, 1] 

In fault trees analysis, we often encounter BE with low 
probabilities. Therefore, computing an experton as 
described previously from such values appears impractical, 
because we will be obliged to consider a semantic scale 
with several levels which do not become easily identifiable. 
For this reason, we have used R+_experton concept to   
aggregate experts’ judgments in such case. To build this 

experton from CI   )(*
*

)( ,~ i
kk

i
k ppp  (k=1, r) included in     

[0, 1], the following steps are to be considered:                
 Compute reference interval: 
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 Compute assessment intervals: all the intervals 

  )(*
*

)( ,~ i
kk

i
k ppp   (k=1, r) are linearly positioned within the 

interval   )(*
*

)( ,
~ ii AAA   according to the hendecadrian 

scale shown in the table 2. 
 

 Level Semantic correspondence 
0 For A* 

0.1 Practically A* 

0.2 Nearly A* 
0.3 Near to A* 

0.4 Nearer to A* than to A* 

0.5 As close to A* than to A* 

0.6 Nearer to A* than to A*
 

0.7 Near to A* 
0.8 Nearly A* 

0.9 Practically A*
 

1 For A* 

Table 2: Counter-expertise levels. 

Thus, it will be associated to each interval   )(*
* ,

i
kk pp an 

assessment interval   )(*
*

)( ,~ i
kk

i
k ααα  , where *k and *

k 

belong to {0, 0.1, 0.2, …, 0.9, 1}; *k *
k  k. Figure 2 

illustrates the algorithm for assessment intervals. 
 

 

Figure 2: Illustration of assessment intervals algorithm. 

(11) 

(10) 
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 Compute the experton )(~ i
kα following steps described in 

4.2.1. 
 Compute the R+_experton using the following linear 
equation: 

 )(
*

*
*

)( ~)()()(~ ii αAAAp               (12) 

Where the operation (+) and (.) are carried out level by 
level. 
 
3.2.3. Experton of the TE 

All algebraic operations applied to CIs can be used with 
expertons as long as the monotony property will be 

preserved, as this is the case with the operators )ˆ( and (. ) 

from which the probability of the TE is computed, 
Considering the SSF of a FT, the experton of the TE can be 
obtained with the replacement of the state variables by the 
corresponding BE expertons. Then, each bound is 
calculated from expertons’ level by level. We arrived at: 

 
 P*S 

0               P*
S

 0  
P*S 

0.1            P*
S
 0.1 

P* S 
0.2            P*

S
 0.2 

P*S 
0.3            P* 

S 
0.3 

P*S 
0.4            P*

S
 0.4 

 ))(/,~(
~ )( xφxipP Si

i
S


 P* S 

0.5            P*
S

 0.5 (13)                         

 P* S 
0.6            P*

S
 0.6  

PS* 
0.7            PS

* 0.7 
PS* 

0.8            PS
* 0.8 

PS* 
0.9            PS

* 0.9 
PS* 

1               PS
* 1 

     
Information which will be taken into account at the 

moment of the decision-making is given by the 
mathematical expectation of (13) which is obtained by 
adding each of the two columns without taking into account 
level =0 and then dividing the result by 10: 

   )1.0(
~

)2.0(
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...)9.0(
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)1(
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* FFFFEEE       (14) 

On the other hand, at this stage that experts’ judgments 
entropy is made to fall. 
 
4. RESULTS AND DISCUSSION 

The present section is devoted to a comparison of the 
two techniques examined previously, using a suitable 
numerical treatment. We have considered 3 FT taken from 
the literature (figures 1.1, 1.2 and 1.3 in appendix 1) and 
treated numbers belonging to the set J={0, 0.1,..., 0.9, 1} 
and more generally numbers belonging to [0, 1] (J  [0, 
1]). The choice of the number of experts consulted could be 
justified by practical considerations which include the 
limited number of experts in industrial systems concerned 
with reliability analysis, especially when FT contains BE 
referring to different kinds of failure, i.e., component 
failure, human error and environment damage, and refusal 
attitude of certain experts to give quantitative data, even 
with intervals. For the BE of the first FT, it is supposed that 
the maximum number of experts is 5. For those of the 

second and the third one, the number varies from 5 to 10 
and from 3 to 10, respectively.  

Although expertise becomes one of the main sources of 
reliability data, numbers provided by experts to describe 
their knowledge, rely on subjective human reasoning 
methods, which introduce biases into these numbers. 
Besides, research in experimental psychology have shown 
that extracting subjective probabilities from experts cannot 
be taken as a simple question/answer operation, but as an 
engagement between analyst and experts, in which rigorous 
methodology must be followed [10]. To take into account 
the fact that an expert can fail, we have jugged useful to 
consider experts’ deficiencies with regard to four instances 
as shown in figure 3.  

 
Figure 3: Experts' deficiencies. 

Thus, in reference to data D1, where it is assumed that 
all experts agree (i.e., perfect coherence), we have 
considered other data characterized by a divergence varying 
in an increasing way and, in addition to AM, both expertons 
relative to the set J and R+_expertons are used in order to 
make rigorous comparison. For the experts’ valuations 
relative to the first FT, see table 1.1 in appendix 1. Results 
obtained with different techniques are shown in figures 4, 5 
and 6, and the differences existing between them are more 
clarified using the relative Hamming distance defined for 
two CI as: 

   
2

,,,
**

***
*

*
*

zyzy
zzyy

PPPP
PPPPδ


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Figure 4: CI of the TE of the first FT. 

            Exp. in J ,                    R+_Exp. ,                AMs 
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Figure 5: CI of the TE of the second FT. 

 

Figure 6: CI of the TE of the third FT. 

Let CIAM, CIR+_exp and CIexp in J, be the CI of the TE 
calculated from AM, R+_expertons and expertons in J, 
respectively. In reference to figures 4, 5 and 6, we can 
notice that for D1, i.e., reference CIs, both CIAM and 
CIR+_exp are identical. Indeed, we can see that in 
R+_expertons of BE the CI given by experts are kept for the 
ten levels of the hendecadarian scale from the level =0.1. 
For the same data, CIAM and CIR+_exp differ from CIexp in J. 
This difference is more important in the case of the second 
FT (except for D5, we have: CIAM  CIexp in J = ). 
Regarding the data D2, D3, D4 and D5, corresponding to an 
experts’ judgments divergence which reflect the most 
frequent instance, we remark that CIexp in J bounds move 
away from those of CIAM and CIR+_exp. However, CIexp in J 
bounds are closer to those of CIR+_exp than those of CIAM, as 
confirmed also by figures 7, 8 and 9.  

 
Figure 7: Difference between CI: case of the first FT. 

 

Figure 8: Difference between CI: case of the second FT. 

 

Figure 9: Difference between CI: case of the third FT. 

 

This result is due to the fact that both expertons in J and 
R+_expertons relative to BE have common thread that is the 
possibility to maintain judgments disorder through the 
hendecadarian scale, considered of course in two different 
contexts. On the other hand, with AM this disorder is made 
to fall very early.                         

Let us consider now valuations in [0, 1]. The table 2.2 in 
appendix 2 shows data relative to the first FT. Both CIAM 

and CIR+_exp of S1, S2 and S3 are given in figure 10, 11 and 
12.  

 

Figure 10: CI of the TE of the first FT. 

          Ams-R+_Exp,          Ams-Exp. in J,        R+_Exp.-Exp. in J. 
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Figure 11: CI of the TE of the second FT. 

 

Figure 12: CI of the TE of the third FT. 

 

Analysing results, we can remark that with data D1 (i.e., 
judgments perfectly coherent), CIAM and CIR+_exp are 
identical as in the case with valuations to one decimal. With 
the other data, a particular difference between these two 
kinds of intervals can be noticed in the case of the first and 
the third FTs, while it is markedly weak with the second 
FT. Nevertheless, it can be seen that CIR+_exp width is less or 
most equal to the one of CIAM and, therefore, CIR+_exp can 
be considered as less uncertain than CIAM. 
 

CONCLUSION 

In this paper we have examined the aggregation of 
uncertain information supplied by several experts to 
quantify fault trees. Two techniques: arithmetic means and 
expertons were the subject of a rigorous comparison, 
considering an adequate numerical treatment. A first 
important conclusion is that the use of arithmetic means for 

the aggregation of valuations relative to each basic event is 
clearly challenged. In fact, the differences between the 
confidence intervals of top events, calculated with the two 
techniques taken separately, are sometimes remarkable, 
especially when referring to expertons issued from 
valuations to one decimal. As a second conclusion, 
comparing with arithmetic means, expertons have a 
potential capacity for reducing uncertainty. Indeed, all the 
top-events intervals calculated with expertons are smaller or 
equal to those obtained with arithmetic means.  

It is clear that there is no special interest for using 
expertons technique when dealing with linear functions 
because, in this case, arithmetic means give the same result 
with a simple calculation. But when dealing with non-linear 
function, as in the case of the function probability of the top 
event, arithmetic means will be invalid and expertons 
should be used. In addition, it appears important to 
emphasize on the information contained in experton: 
different valuations are represented in experton with their 
real weight. With means, this information is lost by 
removing dispersion. Finally, we must notice that further 
interpretation of the results obtained needs a lot more 
exploitation of theoretical aspects of expertons and non-
linear operators. 
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APPENDIX 1 
 

FAULT TREES USED FOR AGGREGATION PROBLEM 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
APPENDIX 2 

 
EXPERTS’ VALUATIONS RELATIVE TO THE FIRST FT 

 
2.1. Valuations in J={0, 0.1, …, 0.9, 1} 
 

BE 11 21 31 41 51 

Experts number 5 4 3 4 5 

Reference CI (D1) 0.4       0.5 0.2     0.4 0.3       0.4 0.6      0.8 0.5      0.6 

D2 

Expert 1  0.5       0.6 0.3       0.5 0.4        0.5 0.7     0.9 0.6       0.7 

Expert 2  0.3       0.4 0,1        0,2 0.2        0.3 0.5      0.6 0.4        0.5 

Expert 3  0.5        0.5 0.3         0.4 0.3         0.3 0.7       0.8 0.5         0.5 

Expert 4 0.3        0.6 0.2         0.5  0.5        0.9 0.3         0.6 

Expert 5 0.6         0.7    0.6         0.7 

Data D3 

Expert 1  0.6       0.7 0.4       0.6 0.5        0.6 0.8           1 0.7       0.8 

Expert 2 0.2        0.3 0           0.1 0.1        0.2 0.4         0.5 0.5        0.6 

Expert 3 0.5        0.5 0.4         0.4 0.3        0.3 0.8         0.8 0.5         0.5 

Expert 4 0.2        0.5 0.2          0.6  0.4         0.9 0.2          0.7 

Expert 5 0.7          0.8    0.7         0.8 

Data D4 

Expert 1  0.7       0.8 0.5       0.7 0.6        0.7 0.9          1 0.8        0.9 

Expert 2 0.1       0.2 0         0.1 0           0.1 0.3       0.4 0.4         0.5 

Expert 3 0.5        0.5 0.4        0.4 0.3       0.3 0.8        0.8 0.5          0.5 

Expert 4 0.1         0.5 0.1        0.6  0.3          0.9     0.2         0.8 

Expert 5 0.8         0.9    0.8        0.9 

Data D5 

 Expert 1  0.8       0.9 0.6       0.8 0.7        0.8 0.9         1 0.9          1 

Expert 2 0           0.1 0           0.1 0             0.1 0.2        0.3 0.3       0.4 

Expert 3 0.5        0.5 0.4         0.4 0.3         0.3 0.8        0.8 0.5        0.5 

Expert 4 0          0.5 0.1        0.7  0.3          1 0.2         0.9 

Expert 5 0.9          1    0.9           1 

 
Table 2.1: Data in J, relative to the first FT 

Figure 1.1: First FT. Figure 1.2: Second FT. Figure 1.3: Third FT.  
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2.2. Valuations in [0, 1] 
 

BE 11 21 31 41 51 
Number of experts  5 4 3 4 5 
Reference CI (D1) 10-5        3.10-5 10-5         3.10-5 8.10-6       2.10-5 10-3        4.10-3 9.10-4     3.10-3 

D2 
Expert 1  2.10-5      5.10-5 3.10-5         6.10-5 10-5       4.10-5 3.10-3      6.10-3 2.10-3     4.10-3 
Expert 2 8.10-6        10-5 6.10-6           10-5 5.10-6       10-5 7.10-4      10-3 8.10-4     2.10-3 
Expert 3 2.10-5    3.10-5 2.10-5        3.10-5 10-5      2.10-5 2.10-3      4.10-3 9.10-4      2.10-3 
Expert 4 9.10-6    4.10-5 8.10-6       4.10-5  8.10-4      5.10-3 8.10-4      4.10-3 
Expert 5 3.10-5    4.10-5    10-3      4.10-3 

D3 
Expert 1  4.10-5     7.10-5 6.10-5     9.10-5 3.10-5        6.10-5 5.10-3         8.10-3 5.10-3      6.10-3 
Expert 2 6.10-6     8.10-6 3.10-6      6.10-6 2.10-6      6.10-6 5.10-4       7.10-4 6.10-4     8.10-4 
Expert 3 3.10-5     3.10-5 3.10-5      3.10-5 2.10-5        2.10-5 3.10-3       4.10-3 9.10-4        10-3 
Expert 4 8.10-6     5.10-5 7.10-6      5.10-5  7.10-4       6.10-3 7.10-4     5.10-3 
Expert 5 5.10-5     6.10-5    2.10-3     5.10-3 

D4 
Expert 1  7.10-5        10-4 8.10-5   2.10-4 5.10-5       9.10-5 7.10-3      9.10-3 7.10-3      8.10-3 
Expert 2 3.10-6     5.10-6 10-6        3.10-6 10-6          3.10-6 3.10-4     5.10-4 4.10-4      6.10-4 
Expert 3 3.10-5      3.10-5 3.10-5    3.10-5 2.10-5      2.10-5 4.10-3     4.10-3 9.10-4      9.10-4 
Expert 4 7.10-6     6.10-5 6.10-6    6.10-5  6.10-4     7.10-3 6.10-4      6.10-3 
Expert 5 6.10-5     7.10-5    4.10-3      6.10-3 

D5 
Expert 1  9.10-5        3.10-4 10-4       4.10-4 8.10-5      2.10-4 8.10-3        10-2 9.10-3         10-2 
Expert 2 2.10-6        3.10-6 7.10-7         10-6 7.10-7        10-6 2.10-4      4.10-4 2.10-4       4.10-4 
Expert 3 3.10-5        3.10-5 3.10-5      3.10-5 2.10-5     2.10-5 4.10-3      4.10-3 9.10-4       9.10-4 
Expert 4 6.10-6       7.10-5 5.10-6       7.10-5  5.10-4     8.10-3 5.10-4      7.10-3 
Expert 5 8.10-5         10-4    5.10-3      7.10-3 

D6 
Expert 1  2.10-4          4.10-4 4.10-4          8.10-4 2.10-4          5.10-4 10-2         2.10-2 10-2         2.10-2 
Expert 2 10-6          2.10-6 4.10-7          6.10-7 4.10-7 8.10-7 10-4         2.10-4 10-4         2.10-4 
Expert 3 3.10-5         3.10-5 3.10-5         3.10-5 2.10-5          2.10-5 4.10-3         4.10-3 9.10-4      9.10-4 
Expert 4 5.10-6         8.10-5 4.10-6          8.10-5  4.10-4        9.10-3 4.10-4       8.10-3 
Expert 5 9.10-5        2.10-4    7.10-3       9.10-3 

D7 
Expert 1  4.10-4        6.10-4 8.10-4 10-3 5.10-4          8.10-4 1,5.10-2    2,5.10-2 2.10-2    3.10-2 
Expert 2 8.10-7           10-6 10-7                3.10-7 10-7             4.10-7 9.10-5         10-4 8.10-5      9.10-5 
Expert 3 3.10-5       3.10-5 3.10-5          3.10-5 2.10-5          2.10-5  4.10-3        4.10-3 9.10-4     9.10-4 
Expert 4 4.10-6       9.10-5 3.10-6          9.10-5  3.10-4            10-2 3.10-4      9.10-3 
Expert 5 10-4          3.10-4    8.10-3       10-2 

D8 
Expert 1  7.10-4         9.10-4 10-3          4.10-3 8.10-4               10-3 2.10-2       3.10-2 2,5.10-2   3,5.10-2 
Expert 2 5.10-7        7.10-7 8.10-8 10-7 8.10-8               10-7 8.10-5      9.10-5 7.10-5       8.10-5 
Expert 3 3.10-5        3.10-5 3.10-5 3.10-5 2.10-5 2.10-5 4.10-3       4.10-3  9.10-4     9.10-4 
Expert 4 3.10-6          10-4 2.10-6  10-4  2.10-4       2.10-2 2.10-4 10-2 
Expert 5 3.10-4       5.10-4    10-2             2.10-2 

D9 
Expert 1  10-3             2.10-3 3.10-3        6.10-3 10-3                 3.10-3 3.10-2        4.10-2 3.10-2     4,5.10-2 
Expert 2 2.10-7        4.10-7 6.10-8        8.10-8 5.10-8           7.10-8 6.10-5        8.10-5 6.10-5    7.10-5 
Expert 3 3.10-5        3.10-5 3.10-5        3.10-5 2.10-5 2.10-5 4.10-3        4.10-3 9.10-4   9.10-4 
Expert 4 2.10-6        2.10-4 10-6             2.10-4  10-4             3.10-2 10-4        2.10-2 
Expert 5 6.10-4        9.10-4    2.10-2      3.10-2 

D10 
Expert 1  4.10-3           6.10-3 5.10-3         8.10-3 3.10-3          5.10-3 5.10-2 6.10-2 4.10-2        5.10-2 
Expert 2 10-7               2.10-7 5.10-8 6.10-8 3.10-8 5.10-8 5.10-5 6.10-5 4.10-5        6.10-5 
Expert 3 3.10-5            3.10-5 3.10-5 3.10-5 2.10-5 2.10-5 4.10-3 4.10-3 9.10-4         9.10-4 
Expert 4 10-6               3.10-4 9.10-7         3.10-4  9.10-5             4.10-2 9.10-5       3.10-2 
Expert 5 8.10-4           10-3    3.10-2       4.10-2 

D11 
Expert 1  7.10-3         9.10-3 8.10-3            10-2 6.10-3         8.10-3 6.10-2           7.10-2 5.10-2    5,5.10-2 
Expert 2 7.10-8          10-7 3.10--8  5.10-8 10-8             2.10-8 4.10-5           5.10-5 3.10-5       4.10-5 
Expert 3 3.10-5           3.10-5 3.10-5 3.10-5 2.10-5         2.10-5 4.10-3           4.10-3 9.10-4      9.10-4 
Expert 4 9.10-7         4.10-4 8.10-7 4.10-4  8.10-5           5.10-2 8.10-5       4.10-2 
Expert 5 10-3          3.10-3    4.10-2       5.10-2 

 

Table 2.2: Data in [0, 1], relative to the first FT. 
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