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Abstract 
In the present work we report results of the simulation of transport phenomena in InP under uniform 

electric fields in both transient and steady state regimes using semi-classical Ensemble Monte Carlo 
method (EMC). The EMC algorithm used consists mainly of the simulation of an ensemble of carriers 
and follows their history in parallel for a sequences of very short time intervals in three dimensional 
momentum and real spaces.  After each sampling interval, data (drift velocity, energy…) is collected for 
each particle and the values are averaged. In our simulation an ensemble of 105 electrons are used. The 
program was written with Fortran 90 language  and run on IBM PC(PIII, 800GHz). The obtained results 
are in good agreement with reported experimental data. 
Key words: Transport phenomena, Monte Carlo, semiconductor, scattering. 

  
Résumé 
Dans ce travail, on  présente les résultats de la simulation du phénomène de transport dans l’InP, 

avec la méthode semi-classique de l’Ensemble Monte Carlo (EMC). L’étude de l’influence d’un champ 
électrique uniforme en régimes transitoire et stationnaire a été effectuée. L’algorithme EMC utilisé 
repose essentiellement sur la simulation du mouvement des porteurs de charge en parallèle pour des 
intervalles de temps réguliers très court dans l’espace des vecteurs d’onde et l’espace réel. A la fin de 
chaque intervalle l’historique des particules (énergie, vitesse de dérive..) est enregistré, ainsi les valeurs 
moyennes sont calculées. On a considéré un échantillon d’InP non-dopé composé de105 électrons. Les 
calculs on été fait sur IBM PC(PIII, 800GHz à l’aide d’un code Fortran 90. Les résultats obtenues sont 
en bon accord avec les données expérimentales.  
Mots clés: phénomène de transport, Monte Carlo, semi-conducteur, collision. 

 
 
 
 

he advance of epitaxial technologies such as molecular beam epitaxy 
(MBE) and metal-organic chemical vapour deposition (MOCVD), 

has lead to an extraordinary dimensional control of semiconductor layers. 
It has enabled the fabrication of unconventional device structures such as 
modulation-doped layers, superlattices, quantum wells...etc with new 
properties resulting from the controllability of band discontinuities and 
the confinement of electronic states to narrow layers. At the same time 
advent of modern time resolved measurement techniques, such as the 
electo-optic sampling (EOS) technique, allows transport processes to be 
determined with sub-picosecond temporal resolution. In modelling such 
device structures and their transport processes, hot electrons as well as 
time and space dependent phenomena are important. It is invalid to 
assume a priori the carrier distribution functions, as used in common 
numerical models such as drift-diffusion equations, relaxation time 
approximations, displaced Maxwellian approaches, etc. The Monte Carlo 
(MC) technique, besides its greater ability to deal with band and 
scattering details, has the advantage of solving the Boltzmann transport 
equation (BTE) without assuming a priori distribution functions [1,2].  

 
I- MONTE CARLO SIMULATION 

The MC technique involves basically simulating the free particle 
motion terminated by instantaneous random scattering events. The MC 
algorithm consists of generating random free flight times for each 
particle, choosing the type of scattering occurring at the end of the free 
flight, changing the final energy and momentum of the particle after 
scattering and then repeating the procedure for the next free flight [3,4]. 
Sampling the particle motion at various times throughout the simulation 
allows  for  the  statistical  estimation of  physical  quantities  such as  the  
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  ملخص
  في أجرينا في هذا البحث محاكاة لظاهرة التنقل

InP تحت تأثير حقل كهربائي متجانس وذلك خلال
المرحلتين الانتقالية والمستقرة باستعمال طريقة

 يعتمد الخوارزمي المستعمل.)EMC( مونتي كارلو
أساسا على محاكاة حركة متوازية لحوامل الشحنة

يرة جدا فيخلال مجالات زمنية منتظمة وقص
 الموجي والحقيقي، في نهاية كليالفضاءين الشعاع

سرعة الانسياق،(مجال يسجل تاريخ كل جزيئة 
تتكون العينة. ثم تحصيل المعدلات...) الطاقة

كتب البرنامج المستعمل. إلكترون  105 المستعملة من
  من خلال جهازأنجز و)Fortran 90( بلغة الفورتران

 .IBM PC(PIII, 800GHz) حصلتالنتائج المإن
.عليها في انسجام جيد مع المعطيات التجريبية الواردة
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  .شبه ناقل، الإنتشار 
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distribution function, the average drift velocity, the average 
energy, the valley occupancy, etc.  

The simulation starts with one electron in given initial 
conditions with wave vector k0. Then the duration of the 
first free flight is chosen with a probability distribution 
determined by the scattering probabilities. During the free 
flight the applied force changes the momentum of the 
electron according to the relation:  

( ) (0)= −
h

eEtk t k           (1) 

where E is the electric field vector component directed in x, 
y or the z direction.  

If  Γ[k(t)] is the total scattering rate given by the sum of 
all individual scattering rates:  

1
( ) ( )

=
= ∑

m

i
i

k kΓ λ            (2) 

where m is the total number of scattering mechanism and 
λi(k) is the individual scattering rate. 

Then the probability per unit time that the electron will 
drift before a scattering event is given by: 
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The time of free flight tf can be obtained by integrating 
equation (3):   
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where r is a random number uniformly distributed between 
0 and 1. Equation (4) is the fundamental expression used to 
generate the random free flight time after each scattering 
event. This equation is complicated and would require 
extensive computer resources to solve, as flight times are 
generated millions of times in a standard MC simulation. 
However, the so-called self-scattering method devised by 
Rees [5] can be used. In Rees’ method we introduce a 
fictitious scattering mechanism whose scattering rate 
always adjusts itself in such a way that the total rate (self-
scattering plus real scattering) is a constant in time: 

0 0 ( ) ( )k kΓ λ Γ= +           (5) 

where λ0(k) is the self scattering rate and Γ0 is constant. The 
integration of equation (3) gives then: 

0

1 ln(1 )ft r
Γ

= − −           (6) 

since r ∈ (0,1) we can also write: 

0

1 ln( )ft r
Γ

= −            (7) 

It is necessary, however, to take the constant  Γ0 to be at 
least  as large as the largest value of  Γ[k(t)] in order to avoid 
negative values of λ0(k).  When Γ(ε) is an increasing function 
of ε, as is often the case, Γ0 can be taken equal to Γ(εM), where 
εM is a maximum electron energy with negligible probability 
of being achieved by the electron during the simulation. The 
value of  εM cannot be taken too large in order to avoid 
unnecessarily large value of  Γ that would result in a waste of 

computer time for self-scattering events.  
To reduce the probability of self-scattering events we 

adopted a so called iterative Gamma [6]. In this technique 
the first estimated Γ0  is Γ01 that should be greater than 
Γ(ε1), ε1 is the electron energy at the start of the flight. At 
the end of the flight the electron has a new energy ε2 . If  
Γ(ε2) is greater than Γ01, scattering mechanisms are 
excluded from the choice yielding a negative scattering rate 
which we have to avoid. A new selection has therefore to 
be made with: 
Γ02  = Γ01 + ∆Γ0           (8) 

If  Γ02 < Γ(ε2) the process has to be repeated by adding 
an other increment  ∆Γ0 to Γ02 . This process usually 
converges after a few steps. The selection of ∆Γ0 is a matter 
of experienced in our case  ∆Γ0  = 0.1 Γ0 was a reasonable 
choice.  

The effectiveness of the procedure depends critically on 
the additional computation time required by the calculation 
of the free flight compared to the time saved through the 
reduction of self-scattering events.      

To determine the scattering process, the product of a 
random number r ∈ (0,1) with  Γ0 is compared with the 

successive sums of the individual scattering rates 
1
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where m is the total number of real scattering mechanisms. 
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while for rΓ0 > Γ(ε) this corresponds to self-scattering. 
In MC simulation, a quantity A is in general a function 

of free flight duration, ensemble size, valley, position, and 
time. The average value (e.g., the drift velocity, the mean 
energy, etc.) is given by: 
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where N is the number of particles in the ensemble.  
We may also obtain the electron distribution function 

for a homogeneous system in steady-state. To do so a mesh 
in k space (or energy) is set up at the beginning of the 
computer run. The steady-state distribution function is 
proportional to the number of electrons that at time t are 
found to be in a cell of fixed volume ∆k around k  (or ∆ε  
around ε). 

The atoms in InP crystallise in a zinc-blend structure. 
Like most III-V semiconductors, a simplified 3 valley band 
structure may be used. This model treats the conduction 
band as a combination of the Γ, X and L valleys that are 
discrete, or separate from each other. The three valleys are 
treated as non-parabolic valleys. A simple analytical way of 
introducing non-parabolicity is to consider an energy-wave 
vector relation of the type: 
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where α is a non-parabolicity parameter. 
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The scattering mechanisms taken into account were 
acoustic phonon, polar and non-polar optic phonons and 
intervalley (Γ⇔L, Γ⇔X, L⇔X, with the absorption/emission 
of one or two phonons). Piezoelectric scattering has a 
negligible effect at 300 K. Inter-carrier scattering (electron-
electron and electron-hole) is also neglected. The parameters 
used in the simulation are shown in table 1 [7,8]. 
 

Table 1: InP parameters used in the MC simulation. 

Parameter Γ L X 

Polar optic phonon energy (eV) 
Non-polar optic phonon energy (eV) 
Non-polar optic deformation  
                                  potential (eV/m) 
Acoustic potential (eV) 
Intervalley: phonon 1 
  Deformation potential (eV/m) Γ → 
  Energy (eV) 
  Deformation potential (eV/m) L → 
  Energy (eV) 
  Deformation potential (eV/m) X→ 
  Energy (eV) 
Intervalley: phonon 2 
  Deformation potential (eV/m) Γ → 
  Energy (eV) 
  Deformation potential (eV/m) L → 
 Energy (eV) 
 Deformation potential (eV/m) X→ 
 Energy (eV) 

0432 
0.043 
 
67x1010 

7 
 
 
1.37x1011 
0.0337 
1.25x1011 
0.0337 
 
 
 
1.4x1010 
0.0068 
 
7.5x109 
0.0084 

0.0432 
0.043 
 
67x1010 

12 
1.37x1011 
0.0337 
5.6x1010 
0.0337 
8.4x1010 
0.0337 
 
1.4x1010 
0.0068 
 
 
 
1.94x1010 
0.0068 

0.0432 
0.043 
 
67x1010 

11 
1.25x1011 
0.0337 
8.4x1010 
0.0337 
9.9x1010 
0.0239 
 
7.5x109 
0.0084 
1.94x1010 
0.0068 
 
1x105 
0.0128 

 

II- SIMULATION RESULTS & DISCUSSION 

A- Transient response 
The simulation of electron transport phenomena in 

undoped InP at  300 K is performed using the method 
described above. Initial conditions are very important in the 
simulation of transient regime, in order to build an initial 
energy distribution. We first started with a Maxwellian 
carrier distribution and the system was left to drift for 10 
picoseconds under zero electric field. The obtained electron 
distribution was not a Maxwellian.  

 
Figure 1:  Initial electron distribution in undoped InP at T= 300 K 
with Maxwell- Boltzmann distribution. 

Figure 1 shows that an important peak appears at 39 
meV, which agrees well with the expected value of 3/2kBT 
at T = 300 K. The second peak, less important, is found 
around 43 meV and is due to the absorption of optical 
phonons hωop = 43.2 meV. This energy distribution was 
taken as the initial distribution throughout this work. 

The applied electric field is assumed constant and 
uniform. As we only work in momentum space, the actual 
geometrical position of the particles need not be calculated. 
 

 
Figure 2: The transient response of mean energy  of electrons in 
InP to different uniform electric fields. 
 

 
Figure 3: The transient response of average drift velocity of 
electrons in InP to different uniform electric fields. 
 

The response of the electron gas to an applied electric 
field takes time. In macroscopic theory it is expressed 
through the momentum and energy relaxation times. From 
figures 2 and 3 we can make the distinction between 
momentum and energy relaxation. The latter shows that the 
drift velocity increases to much initially, before relaxing to 
its steady state value. The reason for this is that the field 
first accelerates the particles; these faster particles are then 
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subjected to increased scattering resulting in a net loss of 
energy to the lattice. For higher electric fields the electrons 
begin to increase in energy and move up the valleys. In 
higher valleys, due to the fact that the velocity is inversely 
proportional to the effective masse, the velocity will decrease 
as the masses increase. Once in the valleys, the velocities 
begin to decrease until the valley to valley scattering rates 
and phonon scattering rates reach equilibrium and saturation 
is met. This is the velocity overshoot effect which is 
observed in almost all III-V compounds. The velocity 
overshoot is observed in InP for fields exceeding 10 kV/cm.  

Figure 4 shows the variation of energy and momentum 
relaxation times. The values are calculated from the v(t) and 
ε(t) using a non-linear least squares fitter. For low electric 
fields, the calculation of the energy relaxation time error was 
important as the energy was close to the equilibrium value. 
The error for both energy and momentum relaxation times 
was in all cases less than 5%. The energy relaxation curve 
consists of two regions. In the first one, the relaxation time 
increases with the electric field up to ∼10 kV/cm,  since the 
energy gained by the electrons could not be dissipated 
rapidly. In the second region it falls down sharply. The first 
increase could be attributed to active scattering mechanisms, 
where the electron needs longer time to dissipate the energy 
gained from the electric field during the free flight. As the 
energy gained by the electron increases, the rate of more 
effective energy dissipating scattering mechanisms is 
increased, essentially the intervalley scattering. Therefore 
leading to a considerable diminution of the relaxation time.  
The momentum relaxation time shows an exponential decay 
with the electric field. Its value is generally much reduced 
than that of the energy relaxation time. 
 

 
Figure 4: Energy and momentum relaxation times of electrons as 
a function of electric field strength. 

 
B- Steady state regime 
The dependence of the electron drift velocity on the 

applied field is one of the most important relations required 
in the physical models and numerical simulations of 
semiconductor  devices. In figure 5 the mean drift velocity 
curve shows a maximum of about 2.31x107 cm/s at a  critical 

 

 
Figure 5: Drift velocity of electrons as a function of field 

strength. 
 

field of ∼10.5 kV/cm. For higher fields it decreases to 
saturates near 7.2 x107 cm/s. For low electric field values, 
the velocity increases linearly with the electric field following 
an expression of the form: ( )v E Eµ=  where µ stands for the 
mobility. With further increase in the electric field, the electron 
drift velocity decrease. This phenomena, known as the 
negative differential mobility, has been observed in many III-
V compound semiconductors. As mentioned above, the 
decrease of the drift velocity is due to the scattering of 
electrons into higher valleys, L and X (for very high electric 
fields above 40 kV/cm) where the mobility is low. The 
obtained curve fits well with the reported results of Fawcet et 
al. [9], Gonzalez et al. [10] and Rees et al [11]. Figure 6 
represents the variation of the mobility (v(E)/E) for electric 
fields below 4 kV/cm. The mobility is nearly constant with a 
value of  47026 ± 34 cm2/Vs which compares very well with 
reported experimental value at 300 K [12]. For intense electric 
fields the mobility decreases remarkably, below 100 cm2/Vs  
for E ~ 60 kV/cm. 
 

 
Figure 6: Electrons mobility as a function of field strength. 
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The mean energy exhibit a parabolic increase with the 
electric field for lower values of E (Fig. 7). For high electric 
field the mean energy increase is less remarkable and a 
saturation is obtained. Initially all electrons are in the 
central valley Γ at 300 K. As the electric field increases 
continuous migration of electrons into the L valley takes 
place. If the electric field is high enough, the scattering into 
the X valley is observed too. In figure 8 the evolution of 
population occupancy is represented for different intensities 
of the electric field. The simulated results are in good 
agreement with those reported by Borodovskii et al [13]. 
For intense E there is growing disagreement with 
Borodovskii et al. We think that it may be induced by the 
use of  analytical (non-parabolic) dependence of the energy 
in the scattering rates calculation. 

 

 
Figure 7: Average energy of electrons as a function of field 
strength. 

 

 
Figure 8: Population ratio in  valleys  Γ, X and L of electrons as a 
function of field strength.  
 

The initial energy distribution in figure 1 was used in 
the simulation where all electrons are in the central Γ valley 

at zero electric field. It is reported that the choice of the 
initial state is not important in steady state simulation, 
unlike the transient regime where it is very decisive. 
Figure 9 illustrates the effect of the electric field on the 
steady state distribution function. For low electric fields 
(< 5 kV/cm) the distribution function could be 
approximated to the Maxwell-Boltzmann distribution in 
the central valley. As the electric field increases (above 10 
kV/cm), a second peak corresponding to the L valley 
appears at energies around 0.61 eV while the first Γ peak 
diminishes. When the electric field is increased further 
(above 40 kV/cm) a third peak comes into view 
corresponding to the X valley, whereas the L peak 
becomes very important too.  

 

 
Figure 9: The effect of electric field on the steady state electron 
distribution in InP at 300 K. 

 
From this figure we can justify the assumption that at 

300 K all electrons are supposed in the Γ valley. It can also 
be seen that at any voltage the electron population from the 
three valleys contribute to the transport phenomena. This is 
important in the determination of the transport parameters 
as each fraction of the population has its own effective 
masse and therefore its mobility.  

 
CONCLUSION 

We presented a description of the Monte Carlo 
modelling of transient and steady state regimes in bulk 
InP. The basic improvement of the algorithm was to 
reduce enormously the calculating time by introducing the 
iterative Gamma approach. This technique reduces the 
rate of self scattering which is a time consuming 
procedure. We arrived to build an initial energy 
distribution, different from a Maxwell-Boltzmann 
distribution, that gives better transient regime response. 
Using a simple non-parabolic analytical dispersion 
relations ε(k) it was possible to produce fairly accurate 
results for moderately high electric fields. At very high 
electric field intensities the proposed method shows some 
limitations. Indeed, when  the energy of electrons reach 
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values above 2 eV the scattering rates obtained by the 
non-parabolic model is no longer valid. The obtained 
results could be the basis of more sophisticated device 
modelling techniques.  
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