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Abstract 
This study concerns the numerical simulation of the three dimensional forced and mixed convection 

heat transfer in a uniformly horizontal heated pipe. The complete Navier-Stokes equations are 
numerically solved with a finite volume method.. The obtained results show that the mixed convection 
flow is quite three-dimensional. As the Grashof number is increased, a secondary flow develops in the 
form of a two counter-rotating vortices. The  vortices lead to a better mixing of the flow and thus enhance 
the convective heat transfer: the local axial Nu decreases along an entrance region and then increases 
downstream instead of leveling off as in the case of forced convection. The increase is more important for 
higher Richardson numbers.  
Keywords: horizontal  pipe / uniform heating / laminar mixed  convection / numerical simulation. 

 
Résumé    
Cette étude concerne une simulation numérique tridimensionnelle d’un transfert thermique en 

convection forcée et en convection mixte dans un conduit horizontal uniformément chauffé. Les 
équations complètes de Navier-Stokes sont numériquement résolues par la méthode des volumes finis. 
Les résultats obtenus montrent que l’écoulement est tridimensionnel. Au fur et à mesure que le nombre de 
Grashof augmente, un écoulement secondaire se développe sous la forme de deux vortex contrarotatifs. 
Ces vortex conduisent à un meilleur brassage de l’écoulement et de ce fait augmente le transfert 
thermique convectif: le nombre de Nu local axial diminue le long de la zone d’entrée puis, à l’aval du 
conduit, il subit une croissance en se détachant du Nu correspondant à celui de la convection forcée. Cette 
croissance est d’autant plus importante pour des nombres de Richardson élevés.   
Mots clés: conduit horizontal / chauffage uniforme / convection mixte laminaire / simulation 
numérique. 

                      
 

 
undamental research in convective heat transfer in cylindrical pipes 
has gained a lot of consideration in the thermal science literature 

because of its numerous industrial applications. Important applications 
include heat exchangers, combustion systems and solar plants to name 
just a few.  

Mixed convection studies have been reported since the sixties. The 
studies of Mori et al. [1], Shannon and Depew [2,3], Hussaïn and 
McComas [4] and Petukhov and Polyakov [5] have revealed the 
experimental evidence of the contribution of buoyancy forces to the 
considered laminar  forced convective heat transfer between horizontal 
heated pipes and flows of air, water and ethylene glycol.  These studies 
reported mixed convection average Nusselt numbers that are 2.5 times 
those of forced convection. Bergles and Simonds [6] have studied 
experimentally the mixed convective heat transfer between a heated glass 
pipe and a laminar flow of water for Reynolds numbers in the range 460-
800 and Rayleigh numbers in the range 104-106 . They found that the 
mixed convection Nusselt number is three to four times that of the forced 
convection. Similar results are reported by Hong et al. [7] and  Morcos 
and Bergles [8]. Recently Abid et al. [9] have studied the mixed 
convection in a uniformly heated pipe of finite thickness transporting 
water. The heating is produced with Joulean effect in the entire wall 
thickness of the tube. They used Infra-Red Imaging to determine the 
axially increasing wall pipe temperature.   

There has been many numerical studies concerning the problem of 
mixed convection in a uniformly heated horizontal pipe. As examples, we 
cite the work of Newell and Bergles [10] using a finite differences 
method and have presented the stable thermal stratification and reported a 
significant Nusselt number increase. The case of a non uniformly heated 
horizontal pipe transporting air has been numerically studied  by Patankar 
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  ملخص
هذه الدراسة تهتم بالتشابه العددي الثلاثي الأبعاد
للتحويل الحراري بالحمل الإجباري  والمختلط داخل

تحل معادلات. أنبوب أفقي ذات تسخين متجانس
Navier-Stokesالإجمالية عدديا باستعمال طريقة 
محصل عليها بأنأثبتت النتائج ال. الأحجام المنتهية

يؤدي الازدياد في عدد. الجريان هو ثلاثي الأبعاد
Grashofإلى نمو جريان ثانوي يكون على شكل 

قد تعطي الدوامات. دوامتين متعاكستي الدوران
أحسن امتزاج للجريان حيث يؤدي إلى ازدياد التبادل

 المحلي المحوريNuإن عدد : الحراري بالحمل
خل، ثم يزداد في منطقةيتناقص عبر منطقة المد

 الموافق للحملNuالمخرج المتبقية مع ابتعاده من 
هذا الازدياد يوافق الازدياد في عدد. المجبر

.Richardson  
/ التسخين المتجانس/ أنبوب أفقي :الكلمات المفتاحية

  .تشابه عددي/ حمل مختلط
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et al. [11]. The two-dimensional radial-angular flow 
mathematical model is numerically solved by the finite 
volume method.  The Gr∗  is varied from 10 to 107. The 
flow field is represented by four counter-rotating cells at 
higher Gr∗ . The same problem is considered by Law et al. 
[12]. For Gr∗  of the order of 105, the results are 
comparable to those of [11]; however, for higher Gr∗ , the 
flow is represented by two counter-rotating cells instead of 
four. In our study, we will demonstrate that for the 
considered range of  Ri, the secondary flow is represented 
by two counter-rotating cells. The simultaneously 
developing mixed convection  in an inclined heated pipe is 
considered in the recent numerical study of Ouzzane and 
Galanis [13]. Four different cases have been simulated: the 
pipe thickness is considered or neglected and in each case 
the heating is over the entire circumference or over the top 
half of it, the lower half being insulated.  

In our present study, we consider the numerical 
simulation of the three-dimensional forced and mixed 
convection in a uniformly heated horizontal pipe. The main 
objective of our study is the illustration and the explanation 
of the physical differences between the forced and the 
mixed convection and the effect at higher Richardson 
numbers 

 
1- THE GEOMETRY AND THE MATHEMATICAL 
MODEL 

Figure 1 illustrates the geometry and the considered 
hydrodynamic and thermal boundary conditions. A long 
horizontal pipe having an aspect ratio A=100 is uniformly 
heated by a constant heat flux and is used to heat a laminar 
incompressible flow of a Newtonian fluid (water). At the 
pipe entrance the flow is considered a Poiseuille flow 
having a parabolic radial profile. At  the pipe exit, the 
convective fluxes of momentum are considered much 
greater than the diffusive ones justifying the use of null 
velocity gradients at the pipe exit. At the same location, the 
axial heat flux is assumed constant, justifying the use of a 
null second derivative of the temperature. The fluid 
physical properties (except the density) are assumed 
constants (evaluated at an appropriate temperature). The 
density is a linear function of temperature and the 
Boussinesq approximation is applied.  

 

 
Figure 1: Geometry and boundary conditions. 

 
The physical principles involved in this problem are the 

conservation of mass, momenta and energy. They are well 

modeled by the following system of conservation partial 
differential equations: 

The initial conditions: 
At t* = 0  for 0 ≤ r* ≤ 0.5, 0 ≤ θ ≤ 2π  and 0 ≤ z* ≤ 100 : 
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Energy conservation equation :  
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These equations are solved with the following boundary 

conditions: 
At the pipe entrance: z* = 0 

(2)

(3)

(4)

(5)
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for 0 0.5r∗≤ ≤ and 0 2θ π≤ ≤          

( )* * * * *20 , 2 1 4r zV V T V rθ= = = = −                     (6)                         

At the pipe exit : 100z∗ =   
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On the pipe axis, the dynamical axial conditions are 
considered. The computed variables are conveniently 
interpolated at r* = 0. 

At the pipe wall: r* = 0.5    
for 0 2θ π≤ ≤  and 0 ≤ z* ≤ 100 
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Along the angular direction the periodic conditions are 
imposed: 
for 0 ≤ r* ≤ 0.5 and 0 ≤ z* ≤ 100 
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At steady state, a simple energy balance on a small 
portion of the pipe can demonstrate that the local Nusselt 
number depending on θ and z∗  is defined by: 
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The bulk (mixing cup) non dimensional temperature is 
defined by: 
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Another local Nusselt number depending only on the 
axial coordinate z∗  but averaged over the angular 
coordinate θ can be defined as: 

2

0
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θ θ
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2- THE NUMERICAL PROCEDURE  

The model equations Eqs.(1)-(5) are descretized using 
the finite volume method, well described by Patankar [14]. 
The power-law discretization scheme is used in our study. 
The SIMPLER algorithm [14] is used to obtain the 
sequential solution of the descretized model equations. The 
line by line sweeping method, involving the use of the tri-
diagonal and the tri-diagonal cyclic matrices solver, is used 
for the iterative solution of the systems of the descretized 
equations. 

In the r∗ , θ, z∗directions, three numerical grids: 
22x22x42, 43x44x83 and 43x44x165, were tested to 
estimate the effect of the grid resolution on the results. It is 
found that the last two grids give similar results. For 
example, the figure 2 show  this mesh size independence 
for the fluid temperature at the axis of the tube. The results 
that will be presented later are those of the 43x44x165 grid. 
Time marching, with the time step * 310t −∆ = , is continued 
until the steady state is reached. The steady state is checked 
by the satisfaction of the global mass and energy balances 
as well as the leveling off of the time evolution of the 
hydrodynamic and thermal fields.  

 

 
Figure 2: Mesh size influence on the axial evolution of the fluid 
temperature at the center of the pipe. 
 

The accuracy of the results of our numerical code has been 
tested by the comparison of our results with previously 
published results. For the pure forced convection case with a 
hydrodynamically developed flow, figure 3a shows that the 
axial evolution of the circumferentially averaged Nusselt 
number agrees very well with the empirical solution: 

1 3 1 24.36 1.31 ( ) exp( 13 ( ) )Nu z z+ += + −  

where RePrz z+ ∗= , cited in Polyakov [15].  
 

 
Figure 3a: Validation of the calculated average Nusselt number 
(forced convection, Gr*=0). 
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Furthermore, in the mixed convection regime,  the 
figure 3b compare the angular variation of the wall 
temperature at three axial positions with the results of 
Ouzzane and Galanis [13]. Their results concern the 
simultaneously developing heat transfer and fluid flow in a 
uniformly heated inclined pipe ( o40α = ). The controlling 
parameters of the problem are: Re=500, Pr=7.0, Gr=106, 

90L D = , 0.5R D = . The used grid is 40x36x182 in the 

r∗ , θ , z∗  directions, respectively. It is seen that there is a 
good agreement between our results and theirs. 
 

 
Figure 3b: Comparison of the calculated angular variation of the 
wall temperature at three axial positions with the results of 
Ouzzane and Galanis [13]. 
 
3- RESULTS 

The Reynolds number, the Prandtl number and the Aspect 
ratio are fixed : Re 1000= , Pr 3.02=  and A=100. However, 
the Grashof number is varied: three numbers are considered 

0Gr∗ = , 610Gr∗ = and 710Gr∗ = . The first one, 0Gr∗ = , 
corresponds to the forced convection case which  is considered 
our reference state. The latter two numbers, 610Gr∗ =  and 

710Gr∗ = , are those of the mixed convection cases with the 
Richardson number ( 2Ri Gr Re∗= ) equal to 1 and 10, 
respectively. These cases represent the effect of the increased 
intensity of the natural convection and will be compared with 
the reference state. The flow and thermal fields of each case 
will be discussed and the heat transfer rates (of the three cases) 
measured by the values of the local Nusselt numbers will be 
compared. 

 
3.1- The forced convection reference state ( 0Gr∗ = ) 
3.1.1- The flow field  

The flow and thermal fields of such a case have to be 
axisymmetric. The imposed pipe entrance flow is of 
Poiseuille’s type: it has only one velocity component, along 
the axial direction, that is equal to that of the 
hydrodynamically developed flow. The null radial and 
angular velocity components at the pipe entrance, the non 
slip conditions at the pipe wall and the null Gr∗  will keep 
these components equal to zero throughout the pipe. Nothing 

will induce a change of such values. Thus, the flow will keep 
its entrance profile throughout the pipe. The axial velocity 
profile at any pipe section from 0z∗ =  to 100z∗ =  is 
illustrated in figure 4. It is clear that the axial flow is 
axisymmetric with a parabolic radial profile. The axial velocity 
increases from zero at the wall to its maximum value (2) at the 
pipe center. 

 

 
Figure 4: Axial velocity profile at any pipe section for the 
reference state (Gr*=0). 
 
3.1.2-  The thermal field 

The flow enters the pipe at a zero temperature and is 
heated by a uniformly axisymmetric heat flux at the pipe 
wall. It is a case of a hydrodynamically developed, thermally 
developing flow. It is expected that the flow temperature will 
increase along the axial direction but will be axisymmetric at 
any pipe section. This is imposed by the null radial and 
angular velocity components as well as the axisymmetric 
axial flow and the thermal boundary conditions. 

 

 
Figure 5: The bulk fluid temperature along the pipe for the 
reference state. 

 
The mixing cup bulk temperature (as defined in the 

mathematical model) increases linearly from the entrance to 
the exit of  the pipe as shown  in figure 5.  This is explained  
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by the continuous addition of heat as the fluid flows 
through the pipe. This heat diffuses radially and alters the 
radial distribution of the temperature. The variation is 
demonstrated by the graphical presentation of the thermal 
field at four arbitrarily selected axial stations: 25,z∗ =  

50z∗ = , 75z∗ =  and 100z∗ = . The thermal fields of the 
selected  sections are  presented  in  figures 6a-6d.  At  each 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

section the non dimensional temperature is normalized by 
the maximum non dimensional temperature located at the 
exit of the pipe ( 0.3417)T∗ = . A comparison of the four 
distributions reveals the increase of the maximum sectional 
temperature and the increase of heat diffusion towards the 
pipe center  along the axial direction. Such a trend is 
compatible with the continuous heating along the pipe and 

 

Figure 6: (a) Normalized isotherms * *
max/T T at z*=25 for Gr*=0 ( *

max 0.3417T = at the pipe exit). 

                 (b) Normalized isotherms * *
max/T T at z*=50 for Gr*=0 ( *

max 0.3417T = at the pipe exit). 

                 (c) Normalized isotherms * *
max/T T at z*=75 for Gr*=0 ( *

max 0.3417T = at the pipe exit). 

                (d) Normalized isotherms * *
max/T T at z*=100 for Gr*=0 ( *

max 0.3417T = at the pipe exit). 
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thus is physically sound.  
The axial Nusselt number defined as 

( )Nu z∗ =
1

( ) ( )w bT z T z∗ ∗ ∗ ∗−
is plotted in figure 7. It shows a 

continuous decrease along the axial direction. Such a trend 
is explained by the fact that the temperature radial gradient 
is constant at the wall (constant heat flux); however, the 
difference between the wall temperature ( )wT z∗ ∗  and the 

mixing cup temperature T zb
∗ ∗( )  increases along the z∗  

direction . The difference is small at the entrance and 
increases continuously. It is established, Cebeci and 
Bradshaw [16], that for a sufficient length of the pipe, 
greater than what is called the thermal entry length, the 
temperature difference will level off and the axial 

( )Nu z∗ will reach its asymptotic value that is equal to 4.36. 

Our pipe length ( 100z∗ = ) is slightly shorter that the 
thermal entry length ( 120z∗ = ) and thus our axial ( )Nu z∗  

at 100z∗ =  is slightly higher than 4.364 . It is equal to 
4.793 which is the value published in the same reference for 
a length 100z∗ = . The results of our reference state are 
found to be physically sound and numerically in excellent 
agreement with those of the specialized literature.  
 

 
Figure 7: Axial Nusselt number for the reference state Gr*=0. 
 
3.2- The mixed convection case with Gr* =106  
3.2.1-  The flow field 

This is a case with a Richardson number ( Ri ) equal to 1. 
The flow field of such a case cannot be axisymmetric. The 
only  possible symmetry is that with respect to the vertical 
plane (parallel to the gravity vector) passing through the 
points θ=0 and θ=π. A transverse flow in the r∗ -θ  plane, at 
any z∗  position, is possible as can be explained by the 
physics of  induction of such a flow. Let us concentrate our 
attention on a single pipe section at a certain z∗ . An imposed 
axisymmetric heat flux is imposed normal to the 
circumference of such a section. The imposed heat flux 
creates a radial temperature gradient: the temperature 
decreases radially from the circumference towards the 

section interior. The hot fluid is close to the perimeter while 
the relatively colder fluid is in the core of the section, 
surrounded by the hot fluid. At the upper part of the section 
the thermal stratification is stable as the hot, and thus lighter, 
fluid is above the colder core fluid. However, at the lower 
part of the section, the inverse case is present: the colder fluid 
is above the hot fluid which creates an unstable thermal 
stratification.  A buoyant force is induced to overcome such 
instability, in the form of a convective circulation that tends 
to rise the hot fluid along the hot perimeter and lower the 
relatively cold fluid of the core towards the bottom of the 
section. The described convective motion must be symmetric 
with respect to the vertical plane passing through θ=0 and 
θ=π. Half the flow circulates counter clockwise in the right 
half section while the other half circulates clockwise in the 
left half section. This secondary flow was also obtained by 
the two-dimensional numerical simulations of Hong et al. [7] 
and Newell and  Bergles [10]. 

The flow in the r∗ -θ  plane is affected by, but not 
induced by, the axial flow. The unstable thermal stratification 
in the lower part of the pipe is the only cause of  induction of 
the flow in the r∗ -θ  plane. Thus for a uniformly heated 
horizontal pipe, the induction of a secondary transverse flow 
in the form of two counter-rotating vortices in the r∗ -θ  
plane is physically sound and must be taken into account if a 
better modeling of the physics of the convective heat transfer 
is envisaged. This was done for the present case ( 610Gr∗ = ) 
as illustrated by the model equations of the r ∗  and θ  
momenta. These contain 2( Re ) cosGr T θ∗ ∗  and 

2( Re ) sinGr T θ∗ ∗  terms which properly model the 

buoyant forces along the r∗  and θ  directions, respectively. 
The transverse flow in the r∗ -θ  plane can be graphically 
visualized by the contours of the  streamlines defined by :  

V
r

θ
∂ ψ
∂

∗
∗

∗
= −  . This relation is integrated over selected 

sections at 25,z∗ = 50, 75 and 100 and the contours plotting 
of the respective normalized streamlines are illustrated in 
figures 8a-8d. For better graphical representation, the stream 
function of each section is normalized by its maximum. The 
maxima are presented on the figures’ captions. The 
previously discussed transverse flow is well present at all 
sections, in the form of  the physically sound two counter-
rotating vortices. Their circulation avoids the section top part 
(around θ =0) characterized by the stable thermal 
stratification. The vortices centers are closer to the pipe wall. 
As z∗  increases from 25 to 50 the centers shift from the 
middle to the lower part of the section. Those of 75z∗ =  and 

100z∗ =  are at the same position that is slightly lower than 
that of 50z∗ = . Beyond 75z∗ = , the secondary flow is 
quite hydrodynamically developed.  

The transverse flow interacts with and affects the axial 
one. The  latter  one  is  expected  to differ  from that  of  
the axisymmetric  Poiseuille flow of the 0Gr∗ =  case. The  
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vortices of the secondary flow in the r∗ -θ  plane affect the 
transfer of the axial momentum. It is expected that the 
effect will be larger in the lower part of any section where 
the vortices motion is more important. This is the case as 
can be illustrated by the figures 9a-9d that represent the 
sectional variation of the axial velocity at the selected axial 
positions 25,z∗ =  50, 75 and 100z∗ = . The figures show 
that the distribution is not axisymmetric but symmetric with 
respect to the vertical line passing though θ = 0 and θ = π. 
This symmetry forces the location of the maximum velocity 
to be on this line. However, the maximum velocity is in the 
lower part of the line. The shifting of the velocity maximum 
to a position below the section center is due to the effect of 
the secondary flow that drives it downward. The combined 
motion, of the axial and the transverse flows, imparts to the 
fluid two  helicoidal motions on  the left and on the right of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the vertical plane of symmetry. The helicoidal motion is the 
combination of the rotation in the r∗ -θ plane and the 
translation in the axial direction. Since the rotation is 
mainly in the lower pipe region, the helicoidal motion is 
enhanced in this region causing the shifting of the 
maximum axial velocity towards the lower part of the pipe. 
It is noticed that the axial flow (and thus the whole flow) is 
quite hydrodynamically developed beyond 75z∗ = . 

 
3.2.2- The thermal field 

The thermal field of the mixed convection flow is 
expected to be symmetric with respect to the vertical plane 
passing through θ=0 and θ=π, but cannot be axisymmetric. 
This is due to the rotational mixing caused by the secondary 
flow in the r∗ -θ  plane. Thus, at any  pipe  section, the heat 

 
Figure 8: (a) Normalized streamlines * *

max/ψ ψ at z*=25 for Gr*=106 ( *
max 0.00556ψ = at z*=25). 

                (b) Normalized streamlines * *
max/ψ ψ at z*=50 for Gr*=106 ( *

max 0.00395ψ = at z*=50). 

                (c) Normalized streamlines * *
max/ψ ψ at z*=75 for Gr*=106 ( *

max 0.00363ψ = at z*=75). 

                (d) Normalized streamlines * *
max/ψ ψ at z*=100 for Gr*=106 ( *

max 0.00357ψ = at z*=100). 
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is diffused through the pipe wall and is convected along it. 
It is expected that the heat transfer will be enhanced in the 
lower portion of the pipe where an unstable thermal 
stratification is established and the rotating secondary flow 
is accelerated along the wall pipe. In the upper part of the 
section, the flow is hotter towards the wall. The maximum 
temperature must be on the plane of symmetry.  Moreover, 
because of the imposed heat flux  at the wall, the maximum 
sectional temperature must be at the wall. Thus, the 
maximum sectional temperature must be at the section top 
point (θ=0). The thermal stratification at the upper part of 
the section is stable. Moving radially inward from the wall 
to the section inner part, the temperature decreases towards 
the cold fluid core. This colder core is not centered around 
the pipe axis. It is in the lower section part. It is driven to 
this position by the rotational secondary flow. This is well 
illustrated by the figures 10a-10d showing the pipe sections 
thermal fields at 25,z∗ =  50, 75 and 100, respectively. 
These sectional temperature profiles are qualitatively 
confirmed by the experiment of Pethukhov and Polyakov 
[5] who obtained exactly the same profiles for the case of 
(Ra = 2.8 107, Re = 960 and Pr =5). The  thermal  fields  are 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
normalized by the maximum non dimensional temperature 
( 0.3771T∗ = ) located at the top exit of the pipe. A 
comparison of such fields clearly reveals the increased axial 
heating of the fluid and the shifting of the cold core fluid 
towards the sections' lower parts under the effect of the 
better mixing due to the rotational flow in the r∗ -θ  plane. 
This better mixing will certainly lead to an enhancement of 
the heat transfer.  

Figure 11 compares the axial variation of the mixing cup 
temperature and the wall temperature at three selected angular 
positions: 0, 2θ θ= = π  and θ =π  corresponding to the 
top, the middle and the bottom parts of the section, 
respectively. It is noticed that all temperatures increase axially 
as expected. The mixing cup temperature rises linearly and the 
wall temperature decreases from θ=0 to θ=π, along the 
circumference. Up to the pipe exit, the mixing cup temperature 
remains lower than the minimum wall temperature (at θ=π ). 

In figure 12, we compare the axial local Nusselt number 
Nu( z∗ ) of the reference state ( 0Gr∗ = ) and that of the 

610Gr∗ =  case.  It is seen  that  the Nusselt  number of  the  

 

Figure 9: (a) Axial velocity contours at z*=25 for Gr*=106.       
                 (b) Axial velocity contours at z*=50 for Gr*=106.  
                 (c) Axial velocity contours at z*=75 for Gr*=106.  
                (d) Axial velocity contours at z*=100 for Gr*=106.  
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Figure 11: Axial variation of the bulk temperature *
bT and the 

wall temperature *
wT at 0θ = , / 2π and π for Gr*=106. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 12: Variation of the local axial Nusselt numbers for Gr*=0 
and 106. 

Figure 10: (a) Normalized isotherms * *
max/T T at z*=25 for Gr*=106 ( *

max 0.3771T = at the pipe exit). 

                   (b) Normalized isotherms * *
max/T T at z*=50 for Gr*=106 ( *

max 0.3771T = at the pipe exit). 

   (c) Normalized isotherms * *
max/T T at z*=75 for Gr*=106 ( *

max 0.3771T = at the pipe exit). 

   (d) Normalized isotherms * *
max/T T at z*=100 for Gr*=106 ( *

max 0.3771T = at the pipe exit). 
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reference state decreases continuously along the axial 
direction whereas that of 610Gr∗ = decreases from the 
entrance of the pipe to a distance around 8z∗ =  and then 
increases continuously from that position to the exit. Such 
an increase characterizes the enhancement of the heat 
transfer due to the mixing imparted to the fluid by the 
rotational flow. The qualitative axial increase of the local 
Nusselt number was also reported by an experimental 
mixed convection study by Shannon and Depew [2].  

 
3.3- The mixed convection case with Gr* = 107 
3.3.1-  The flow field 

The flow field of such case corresponds to a Richardson 
number (Ri =10). This flow field is expected to be qualitatively  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

similar to that of 610Gr∗ =  but with a more intensive 
rotational flow. The buoyant force is larger and the fluid 
mixing is enhanced. The rotational flow is presented in figures 
13a-13d.  As in the case of 610Gr∗ = , at all sections, two 
counter-rotating vortices are observed but they are stronger as 
proven by the increased values of the stream function at any 
section (see the maxima of the stream function presented on 
figures’ captions). This increased strength of the rotational 
flow is expected to have an increased effect on the axial flow 
profile and on the local heat transfer. Moreover, it is noticed 
that beyond 75z∗ = , the rotational flow is hydrodynamically 
quite developed along the axial direction. 

The axial velocity profiles shown in figures 14a-14d are 
qualitatively similar to those of the 610Gr∗ = case but have  

 

Figure 13: (a) Normalized streamlines * *
max/ψ ψ at z*=25 for Gr*=107 ( *

max 0.00787ψ = at z*=25). 

   (b) Normalized streamlines * *
max/ψ ψ at z*=50 for Gr*=107 ( *

max 0.00653ψ = at z*=50). 

   (c) Normalized streamlines * *
max/ψ ψ at z*=75 for Gr*=107 ( *

max 0.00615ψ = at z*=75). 

  (d) Normalized streamlines * *
max/ψ ψ at z*=100 for Gr*=107 ( *

max 0.00617ψ = at z*=100). 



The physical aspect of three-dimensional mixed convection in a uniformly heated horizontal pipe.  

 49

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
larger angular variations. The higher velocity shifts towards 
the lower part of the sections and larger radial velocity 
gradients are observed between the position of the 
maximum velocity and the bottom of the sections. Of 
course these larger variations are due to the enhancement of 
the rotational flow.  

  
3.3.2- The thermal field 

The thermal field at the same four axial stations 
25,z∗ = 50, 75 and 100 are presented in figures 15a-15d. 

The axial increase of the temperature is very clear. The 
field is normalized by the maximum non dimensional 
temperature 0.3318T∗ =  at the top exit of the pipe. Away 
from the wall, a stable thermal stratification is observed 
from the section top down to the cold fluid core at the 
bottom of the section. However, from the cold core to the 
bottom point the temperature increases and the thermal 
stratification in unstable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An interesting physical phenomenon  is encountered for 

this case (with Ri = 10). It is the reaching of the mixing cup 
temperature its upper possible limit which is the wall 
temperature at the bottom of the pipe. This is illustrated in 
figure 16 where the axial variation of the wall temperature 
at 0, 2θ θ= = π  and θ = π  is compared with that of the 
mixing cup temperature. The mixing cup temperature 
remains lower than the wall temperature at 0.3318T∗ = ; 
however, it asymptotically approaches the wall temperature 
at θ = π  at some axial location near 70z∗ = . We attempt a 
physical explanation of such a phenomenon. We first note 
that the mixing cup temperature (as defined) increases 
linearly in the axial direction due to the constant wall heat 
flux. Moreover, the increase of the wall temperature at 
θ = π gets lower downstream (compared to that of θ=0) 
because of the motion of the cold fluid core towards the 
bottom part of the pipe under the effect of  the secondary 
flow.  Furthermore, the  mixing cup  temperature  cannot be  

Figure 14: (a) Axial velocity contours at z*=25 for Gr*=107.  
   (b) Axial velocity contours at z*=50 for Gr*=107.  
   (c) Axial velocity contours at z*=75 for Gr*=107.  
   (d) Axial velocity contours at z*=100 for Gr*=107.  
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Figure 16: Axial variation of the bulk temperature *

bT and the 

wall temperature *
wT at 0θ = , / 2π and π for Gr*=107. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
higher than any wall temperature because of the imposed 
thermal boundary condition: a heat flux from the wall to the 
fluid. This makes the minimum wall temperature (at the 
bottom of the pipe) an upper bound for the mixing cup 
temperature. A bound that the mixing cup temperature 
approaches asymptotically beyond 70z∗ = . Beyond this 
z∗ , the bottom wall temperature  may be considered a 
measure of the mixing cup temperature. This makes the 

local Nusselt number defined as 1
(1 , , ) ( )2 bT z T zθ∗ ∗ ∗ ∗−

 

infinite at the bottom of the wall (whereθ = π  and 

( ) (1 2, , )bT z T zθ∗ ∗ ∗ ∗→ ). The local axial Nusselt number 

( )Nu z∗ , as defined, also goes to infinity beyond 70z∗ = . 

The axial Nusselt numbers of  0Gr∗ = , 610Gr∗ = and 
710Gr∗ =  are compared in figure 17. There, it is seen that 

Figure 15: (a) Normalized isotherms * *
max/T T at z*=25 for Gr*=107 ( *

max 0.3318T = at the pipe exit). 

   (b) Normalized isotherms * *
max/T T at z*=50 for Gr*=107 ( *

max 0.3318T = at the pipe exit). 

   (c) Normalized isotherms * *
max/T T at z*=75 for Gr*=107 ( *

max 0.3318T = at the pipe exit). 

  (d) Normalized isotherms * *
max/T T at z*=100 for Gr*=107 ( *

max 0.3318T = at the pipe exit). 
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the enhancement of heat transfer due to the mixing caused 
by the secondary flow is much more important for the 

710Gr∗ =  case. Such a case cannot be simulated by a 
forced convection model. 

 

 
Figure 17: Comparison of the local axial Nusselt numbers of the 
three Grashof numbers: 0, 106, 107. 

 
CONCLUSION 

The three-dimensional convection in a uniformly heated 
horizontal pipe is considered. The pipe has an aspect ratio 
equal to 100 and transports a fluid with a constant Prandtl 
number 3.02Pr =  at a constant Reynolds number 

1000Re = . Three Grashof numbers are considered: 
0Gr∗ =  corresponding to a forced convection and 

610Gr∗ = and 710Gr∗ = corresponding to the increased 
effect of mixed convection. A finite volume numerical 
method with a uniform grid 43x44x165 points is used to 
solve the model equations by a time marching scheme. The 
flow field of the mixed convection cases are not 
axisymmetric and differ significantly from that of the 
reference state. The induction of the flow in the r∗ -θ  
plane makes these flows three-dimensional. These flows 
impart to the fluid a helicoidal motion that enhances its 
mixing downstream. This mixing enhances the heat transfer 
significantly. It is remarkable that for the 710Gr∗ = case, 
the mixing effect raises the mixing cup temperature to its 
allowable upper bound (the minimum wall temperature).  

 

Nomenclature 
 
A : aspect ratio = L/D 
D : pipe diameter (m)   
g      : gravitational acceleration (m⋅s-2)   

Gr* : modified Grashof number 2 3( ) ( )wg q D k Dβ ν=   
h(θ,z*)    : local heat transfer coefficient (W⋅m-2⋅K-1)  
k             : fluid thermal conductivity (W⋅m-1⋅K-1)   
L             : pipe length (m)  
Nu(θ,z*)  : local Nusselt number  
Nu(z*) : circumferentially averaged  local axial Nusselt number                 
Pr : Prandtl number = ν α  

P : pressure (N⋅m-2)    

P* : non dimensional pressure = 2
0 0 0( )P P Vρ−  

qw : pipe wall heat flux (W⋅m-2)   
R : pipe radius (m)   
Re : Reynolds number = 0V D ν  

Ri : Richardson number = 2Gr Re∗  
R : radial coordinate (m)   
r* : non dimensional radial coordinate = r/D 
t : time (s)   
t* : non dimensional time = 0( )t V D  
T : temperature (K)   
T* : non dimensional temperature = 0( ) ( )wT T q D k−  
Tb : mixing section temperature (K)  
Tb

* : non dimensional mixing temperature = 0( ) ( )b wT T q D k−  
V0 : mean axial velocity at the entrance (m⋅s-1)    
Vr  : radial velocity component (m⋅s-1)      
Vr

*  : non dimensional radial velocity component = 0rV V  
Vθ : circumferential velocity component (m⋅s-1)      
Vθ

* : non dimensional circumferential velocity component = 0V Vθ  
Vz      : axial velocity component (m⋅s-1)      
Vz

* : non dimensional axial velocity component = 0zV V  
Z : axial coordinate (m)   
z* : non dimensional axial coordinate = z D  
 

Greek symbols 

α  :  thermal diffusivity (m²⋅s-1)     
β       :  thermal expansion coefficient (K-1)   
θ       :  angular coordinate (rad)   
ν       :  kinematic viscosity (m²⋅s-1)   
ρ       :  density (kg⋅m-3)   
ψ*     :  non dimensional stream function 
  

Subscripts 
w      :  reference to the pipe wall 
0       :  reference to the pipe entrance 
 

Superscript 
*       :  reference to non dimensional     
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