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NUMERICAL METHOD FOR NON LOCAL

PROBLEM
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Résumé

Dans ce travail on résout un probléme parabolique avec des conditions aux
limites non locales en utilisant la méthode des différences finis compactes d’ordre (d’ordre
6).1a condition au limite intégrale est approchée la méthode de Simpson.les tests numériques
montrent que la solution approchée coincide avec la solution exacte sur plus de cinquante pour
cent des points de discrétisation.

Mots clés: Schémas aux Différences Finis. Schémas Compactes d’ordre élevé, Probléme non local, Ordre de
convergence, Méthodes Numériques pour la résolution des équations aux dérivés partielles

Abstract

This paper is concerned with a high-order finite difference scheme for a non
local boundary value problem of parabolic equation the integral in the boundary equation is
approximated by the Simpson rule numerical experiments show that the approximate solution
coincides with the exact one at more than fifty percent grid points discretization.

Keyyyords: Finite Difference Schemes, High-order Compact Schemes, Non local problem, Order of
accuracy, Numerical methods for partial differential equations.
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Irnroducuon

In this Paper we first introduce the compact
sixth-order finite difference formula then we adjust
compact finite difference formula for the following heat
equation with non local boundary conditions.

ou o’u
o ox’

(x,t) e o.1[x Jo, T[ (1)
ux,0)=f(x) 0<xx<l )
u,(1,t)=g(t) 0<t<T 3)
b
fuexbdx=m(), 0<t<T )
0

where T , g, band M are known.

J. Cannon and J. Vander Hoek [1] studied the
existence and uniqueness proprieties of this problem. A.B.
Gumel [2] has proposed numerical scheme of order

O(h? +h}) Lo-stable parallel algorithm for soling this
Problem later M. Akram and pasha [3] have proposed a
more accurate Algorithm of order O(h. +h). We
propose of
O(h{ +h®) The numerical experiments show that the

sixth-order schemes are unconditionally stable and more
accurate than that in [3] furthermore for the choice

h

a more accurate scheme order

1
=— and ht =——. The approximate solution

8 1000

coincides with the exact one at more than half of grid
points discretization.

2 SIXT-ORDER COMPACT FINITE DIFFERENCE
FORMULA

Compact formula is a special finite difference
method which uses the values of the function and its
derivatives only at three consecutive points.

First keeping time continuous, we carry out a

2

spatial discretization of we divide the interval

x>
[0,1] using a uniform

0 =X, <X, <X, <...<Xy with a mesh size

grid

h, =X, =X .

2.1 STANDARD COMPACT FINITE DIFFERENCE

The standard sixth-order compact finite

difference formula for second derivative is:

16

h? ., . .
(UL @ +10U] (0 +U] L (1)=
12( L(O+10U 1) +U;, (1) o

Ui—l (t) - 2Ui (t) +Ui+1 (t)
1. Write the compact finite difference formula in
general form

h(a U, (0 +aU ®+au;,®)=
b U, (®)+bU; (1) +bU,, (1)

where a_l,ao,al,b_l,bo and b1 are parameters to be

Q)

determined.
2. Expand both sides of the equation (6) using Taylor

series at the point X; with respect to the discretization

parameter hx .

3. We obtain six equations by setting the coefficients
hxj , 1=0,1,2,....,5 equal zero solve the six equations
for the six unknown parameters the obtained accuracy is
O(h®) for formula (6).

2.2- WRITE EQUATION (1) IN A DISCRET POINT
FORM

ou(x;,t) _ o’u(x,,t)

i=1,.,N-1. (7)
ot Ox;

Equation (5) is valid only for i =2,,....,N —2
to attain the same accuracy at i=1and I=N—1
special formula must be developed.

When | =1 we use the formula

o .
E(14ul ()= 5U. (1) +4U(t) -U (1)) = ©

Uy (®O-2U, 0O+U, (1)

From Simpson integration rule we have

b
fuetydx ~ %(uo(t) +4u, (1) + U, (1)) = (1),

b has been chosen as a grid point, and when 1 =N —1 we

use the formula

127, .. 86, ..
—U N—4 (t) +?U N-3 (t) -

hi | 30

12/, 461 . ©)
Uy ®+—U 1
15
=U\,®-Uy,(H)+hU N (t)
We use U to stand for the approximation value of u
throughout this paper.
All Formula are O(h®) or written in matrix

form



AU"(t)=MU(t)+H ,

where
14 -5 4 -1 0
1 10 1 0
0 1 10 10
0 1 10 1
h2
A=2 0 1 10
12
0 1
0
0
-6 0 0
1 -2 1 0
0o 1 -2 1 0
0 1 -2
M= 01 -2
0 1
0
3
—m(t)
h,
0
H=
0
hUy,

Finally we obtain

U't)=A"MUM)+A'H .
Putting A"M =B and A™'H =R(t)

U'(t) = BU(t) +R(t).

equations

NUMERICAL METHOD FOR NON LOCAL PROBLEM

1
86

5

257

10

(10)

461
15

(11)

Substituting in (7) we get a system of ordinary differential

% = BU(t) + R(t), (12)
with the initial condition U (0) = f(X).
Putting
f(t,U (1) =BU @) +R().
we obtain the following equation
%: f(t,U(t)). (13)

We solve this equation using fourth-order Runge-Kutta
Method

k, = f(t,,U,)
1, k

k, = f(t0+5ht,?1htU0)
1, k

k, = f(t, +Eht,72htuo)
k, =f(t, +h.k;h +U,)

U,, =U, +%ht(kl+2k2+2k3+k4) (14)

3 COMPUTATIONAL RESULTS

In order to test the sixth-order compact finite
difference scheme, we consider the
Problem:

Consider the heat equation with

f(x)=0.5x>
g(t) =1
m(t) = 0.75t +%(0.75)3

which is easily seen to have exact solution
u(x,t) = 0.5x> +t.
Using Runge-Kutta method this problem is solved for

el

1000

For hX Zl, ht =—
8 1000

solution are tabulated in table 1.

, the results of approximate
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X exact solution approximate
solution absolute error
1/8 8.8125x107 8.3865x10°
2 7.5053x10
1/4 0.03225 2.8182x107
4.068x107
3/8 7.1313x10 7.1477x10°
2 1.64x10™
172 0.126 0.126
0
5/8 0.19631 0.19631
0
3/4 0.38381 0.38381
0
7/8 0.38381 0.38381
0
Table 1
1 .
For hx =—, ht = ——, the results of approximate
8 1000

solution are tabulated in table 2.

X exact solution approximate
solution absolute error
/10 0.006 0.14449
0.13849
/5 0.021
1.7083x107 3.917x107
3/10  0.046
4.5849x107 1.51x10*
2/5 0.81 8.10446
x102 4.46x107°
12 0.126 0.126
0
3/5 0.181 0.181
0
7/10  0.246 0.246
0
4/5 0.321 0.321
0
9/10  0.406 0.406
0
Table 2
CONCLUSION

It is observed that the results obtained using
compact sixth-order finite difference scheme are highly
accurate. As compared to those of [3] and the method
developed is sixth-order accurate in space and fourth-
order in

Time with very high speed fourth-order Runge-Kutta
algorithm it is to be noted that only one iterate was
needed to obtain the results shown in both table 1 and 2.
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