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Abstract

We present a space-time transformation to the harmonic oscillator with a time-dependent mass and frequency and we
transform the problem to that of constant mass and time-dependent potential of the form . The propagator and the

corresponding wave functions are given. A new general model of time-dependent mass is proposed.
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Résumé

Nous présentons une transformation spatio-temporelle de 1'oscillateur harmonique dont la masse et la fréquence sont des
fonctions du temps. On transforme ce probléme a celui d'une masse constante et un potentiel en fonction du temps de la
formeQ"2 (t) x*2. Le propagateur et les fonctions d'onde sont donnés. Un nouveau modele généralisé de la masse en

fonction du temps est proposé.

Mots clés : L'intégrale des chemins, La masse qui dépend du temps, L'oscillateur harmonique qui dépend du temps, La
transformations qui dépend du temps.
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. INTRODUCTION

Recently, a great deal of attention has been devoted to the
subject of time dependent Hamiltonians. The importance of
this problem in various areas of physics, quantum optics [1],
cosmology [2], nanotechnology [3], plasma physics [4] is the
main reason for these intensive studies. The problem of the
harmonic oscillator with time-dependent mass and frequency
is a common problem in this area. Abdalla and Colograve [5]
studied this problem with a time dependent mass and constant
frequency in order to describe the electromagnetic field
intensities in a Fabry-Pérot cavity by applying a time
dependent canonical transformation. Kandekar and Lawand
[6] have considered the case of exponentially varying mass
with variable frequency by means of path integral method.
The same problem with a constant frequency has been treated
by path integral by many authors for example: Sabir and
Rajagopalan [7] treated the cases of the strongly pulsating
mass and a model of growing mass, the power-low
suppressed harmonic oscillator [8] is also solved. In [9] the
problem with an arbitrary time dependent mass and frequency
is treated using space-time transformations. The same
problem has been solved in[10]. Cheng [11] evaluated the
propagator of a forced time dependent harmonic oscillator.
Looking through the literature one finds that an explicit
expression for the propagator could not be obtained for all
time varying mass-functions because the procedure involves
the solutions of non-linear differential equations. This is the
reason why only few cases of varying mass has been solved.
As mention above the strongly pulsating mass [7], the
exponentially time-dependent mass [6], the power-low mass
[8] and some examples are given in Ref.[12]

In this paper we will give a model of harmonic oscillator with
a time-dependent mass and constant frequency. We will
transform the problem of the time-dependent mass to that of
constant mass and frequency.

Il. EXPLICITLY TIME-DEPENDENT

TRANSFORMATION:

In order to discuss explicitly time-dependent space-time
transformations we start by considering the usual path
integral formulation of a particle with a time-dependent mass
and time-dependent potential according to:

K", t";x',t") = fD[x(t)]exp hf dt(

- V(x, t))

Jim. T (2 m; )1/2 Hfl\l—lfdxjexp{%zyﬂ[?mjz -
VGt )

m(t)

We consider an explicitly time-dependent coordinate
transformation x = h(g, t) , the propagator will be:

K(q”,q’; t”; t’) — (h/(qu’tu)hl(qr’tr))—1/2
I Dla®)]exp (ﬁf(@ (g, + 2R (g, 1) —

h?  h''2(qt)
8m(t) h'*(q,t)

iglat) _
b9t D) V(gq, t)) dt (2)

where  g(q,t) = exp (@ [Th'(z,t)h(z, t)dz) and
h(g,t) is an arbitrary function.

lll. EVALUATION OF THE EXACT PROPAGATOR
FOR THE HARMONIC OSCILLATOR WITH TIME-
DEPENDENT MASS AND FREQUENCY

The general time-dependent Lagrangian for oscillator
harmonic is given by:
L= (0% = m(B)w?(©)x’] (3)
where m(t) and w (t) are well-behaved functions of time. By
using explicitly space-time transformations such that x=

c(t)q , we can rewrite the propagator corresponding to the
Lagrangian Eq.(3) as:

K@, t";q',t") = [e(t)e(t")] 2exp T2 (€50 ¢ —
"
“r 41/ Dla@lexp [ de(24* = T20%(O)¢D)  (4)

¢2

we have put c(t)?m(t)=m, and N%(t) = (E —25 4

c2

w%t))

The fact that 22(t) is a general time-dependent function,
enabled us to investigate the system separately for three
cases where 2%(t)>0, 2?(t)<0 and 22%(t)=0 .

The first case: 22(£)>0

This is the case of the well-known harmonic oscillator
and the propagator of this system [les ref] is given by
1

2

(,yH ’)2
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where y(t) and u(t) satisfy the following coupled
differential equations

fi—uy? +2*(Op =10

uy + 20y =0

The second case: 2%(1)<0

The propagator corresponds to this case can be given by:
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The third case: 02%(£)=0

This case as known is that of the free particle. The propagator
of the time dependent mass and frequency in this specific case
can be treated as the propagator of the free particle with a
constant mass which could be given by:

K(@q",t";q', tl’) =
1

(oo ) ex
2me(te(t’)
q/2 _ quqll]

img [C” 12

2h Lcrr

[ +
(7)
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IV. APPLICATION:

We consider the problem of the harmonic oscillator that have
a mass of the form m(t) = my(a exp(At) + bexp(—At))?,
where m, is a real number, a, b are complex numbers and 4
is a pure real or pure complex number such that m(t) has a
physical meaning. The Lagrangian corresponding to this
system is:

L(x,%,t) = %mo(a exp(At) + bexp(—At))%x? —
%mo(a exp(At) + bexp(—At))?w?(t)x?
(9)

Then the propagator could be given by

k(x",t";x',t") = [ D[x(t)]exp éfL(x,J'c, t)dt
(10)

By using the transformation x = c(t)q, where c(t) =
(aexp(At) + bexp(—At))~?, the propagator Eq.(10) will
transform to the following form :

> g(q ')
g(q'.th

k(xll’tll;xl’tl) — (C(t”)C(t’)) k(q/l tll q t )

(11)

n n,
t

;q',t") is the propagator corresponding to the
L(q,q,t) = 24> = =22 (0* = A1)q?

(t) n n ! !
9(a,t) = exp (5255 q?). The propagator k(q",t";q',t")

is the propagator of the simple harmonic oscillator when
w? > A%, the inverted oscillator .... when w? < A% , and
when w? = A2 it is the free particle propagator , at any rate it
could be written as :

where k(q",

Lagrangian and

k(qH’ t”; q/' tl) -
mof2 2 i mof2
(Znhsin(ﬂ(t”—t’))) €Xp h (2 sin(2(t'"-t")

g cos((e” - t0) ~2q")] )

[(quz +
(12)
where = Vw? — A2 . Then, the whole propagator

k(x",t";x',t") corresponding to the Lagrangian Eq.(9) will
take the form:

21

k(x", tll; x', tl):
(moR)(aexp(Atr)+b exp(—Atr))(a exp(Atr)+b exp(—Atr)) 1/2
2mih sin(Q ("' -t"))

exp — o ((a?exp(24t") — b? exp(—24t"))x""? +
—(a? exp(2At’) — b% exp(—2At"))x'?)
i mef2 "
exp h <27‘[h sin(.()(t” — t’)) ([((aexp@r™
+ bexp(—At"))" x'"?

+ (aexp(At") + b exp(—At"))?x'?) cos(2(t"

—t") ]))

imy

€xp (m ((ZX”x’(a exp(At")
bexp(=At"))(a exp(it)

bep(-2)) (13)
V. SCHRODINGER EQUATION AND THE
INVARIANT OPERATOR:
For a quantal system characterized by time-dependent
Hamiltonian H(t) the Schrédinger equation is:
h 2 W, 0) = HOW(, D (14)

where  Y(x,t) = Yoo CnPn(x,t) , C, are constants and
each Y, (%, t) (the normalized solution of the time-dependent
Schrodinger) satisfies the time-dependent Schrodinger’s
equation. For the bounded systems the propagator can be
written as

k(x5 x",t) = Ty (), ) (x", ) (15)
By using Mehler’s formula to the propagator Eq.(13)
n

exp[~(x* + ¥ ZhZo 5 Ha () Hn () =

(x2+y2-2xyz)
exp|———>———+

(1-2%)
— (16)

where H,(x) is nth Hermite polynomial, x =

ym@Epe") /hx",y = ym(t)Ha(t')/hx"  and
exp(—i.()(t” — t’)) then we obtain the normalized solution
of the time-dependent Schrodinger as:

X =

1
.
Yo lx,t) = [an (mT(Ith).Q)Z 2 exp[—i (n + ;) -2t
exp [Zh (l o 4 Qm(t)) xz] H, <(m:‘(t))% x> (17)

Lewis and Riesenfield [ ] have shown that the general
solution of the Eq.(14) could be written as:

1,[1(3(, t) = Zn (o exp(ien) &, = Zn Crthn (18)

where @,(x,t) are the eigenfunctions of the invariant

operator I(t) corresponding to the system, and we have :
[({t)Pr = Vn

@, (19)
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¥, are the eigenvalues of the invariant operator which are time
—independent .The hermitian invariant operator for our
system can be obtained (Colegrave and Abdella (ref)) as :

+p)

where m(t) = (aexp(At) + b exp(—At))? and 2 =
Vw? — A2, then one could find that the solutions of the
Eq.(19) could be given by:

(222 e [
.Qm(t)) xz] H, ((an(t))% x)

VI. PARTICULAR CASES

A. The exponentially changing mass:

m(t) = myexp(24t):
By putting b = 0, and a = 1 then m(t) = mgyexp(24t) the
propagator Eq (13) in this case could simplify to the form:
1

)7

lmo " ’

exp ﬁ(exp(th )x""? — exp(2At)x'?)
i 0 n n

exp <% (—2 sin(;n(ot,,_t,)) ([exp(2At")x""? +

exp(2At")x"?] cos(Q(t” —t')) — 2exp(A(t” +

t’))x"x’)))

1

_ 2
I=0m(t)x + p——

(5 (20)

N

1

®,(x,t) = [— (iM +

2Mn! 2

(21)

moRexp(A(t" +1t))
2mihsin(Q(t" — "))

k(xll' t”;x,,t,) - (

(22)

B. The strongly pulsating mass m(t) =
my, cos?(ot + 8):

By putting a =b = %exp(id),/l = ic where ¢ is a real
number, the mass will take the from m(t) = m, cos?(at +

6) . The propagator Eq.(13) in this case could simplify to take
the form:

k(xlf' t”; xl’ t/) -

1
cos(at''+8) cos(at'+6)(moﬂ))§ iomg , . ”
( 2mih sin(Q(t''-t")) exp 4h (sm(Zat +

28)x""? — sin(20t’ + 28)x'%)
exp; (ﬁoj—t’)) ([(cos®(at” + 8) x""? + cos?(at’ +
8) x'%) cos(2(t" — t") — 2cos(at” + §)cos(at’ +

§)x"x'N ) (23)

which is the same as given in [6] by putting § = 0 .

c. The mass m(t) = m, cosh?(At +9):

1

Here we have toputa = b = S €xp (9). the propagator

Eq.(13) will be:

22

k(x",t";x',t") =
(cosh(At”+19)cosh(/1t”+,9)(mon)>1/2
2nihsin(Q(t''-t")) Xp
29)x""? — sinh(2At' + 29)x'?)
#ﬁz’_m ([(cosh?(at" +9) q""% + cosh? (At' +

9) q'?) cos(2(t" —

V) q”q’]))

—i

Amg . "
P (sinh(2At" +

exp
t") — 2 cosh?(At" + 9) cosh?(At' +
(24)

which is the same result as given in [13]

VIl. CALDIROLA-KANAI OSCILLATOR WITH AN
INVERSE QUADRATIC POTENTIAL:

Consider the Caldirola-Kanai oscillator with an inverse
quadratic potential

L(x, x,t) = mg(aexp(At) + bexp(—At))? E Myx? —

_ k(aexp(A)+b e;(p(—lt))'z (25)
mox

1
Emowozxz]

2
where k > — # to avoid the fall in the center . By using
0

the transformations given above to the lagrangian in Eq(25),
we obtain the converted Lagrangian:

d

L0 =100 +m g (55 9°) (26)
where
Ld,9,0) = [mod? = Jmo(wo> = 1) %] = -2
(27)

the propagator after the space-time transformations, will
take the form as in Eq( ) .

KQt7520,t) = (e(ee(en) 7 2

g k@'t t)
(28)
with:
K(q".q’;t",t") = [ Dlq®)]exp~ [ dt{zmoq? —
k
3Mo(@0” = 1) ¢7 = ——3 (29)

which is the propagator of the stationary harmonic oscillator
plus an inverse potential . One could find in the literature that

1
I r I Y (q'q”)imoﬂ
k(q",q’;t",t") = <ihsin(.()(t”—t’))

q’z)cos(ﬂ(t”—t’)))lz( o ,))q”q’)

ihsin((t'" -t

o (320
(30)

where z = (1/4 + 2k/h?)Y2 I, is the modified Bessel
img ¢(t)

g) = exp (l;n—h‘)%qz) ,then the whole

propagator related to the system above Eq (25) could be given

as:

function and
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1
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et i imga [ x''? x'? ” ,
c(th3 x ) exp( 2h (c(t”)2 c(t")? ) COS(Q(t —t )) )
I mof2 xn_oxr
Z \ihsin(Q(t" -t") c(t') c(t"
mef)

= At
ihsin(Q(t" —¢") ((aexp@c™)
+ bexp(—At"))(aexp(At")
+b exp(—/u“’)))l/2
imyf2
exp (T ((aexp(At") + b exp(—At'"))x""?
+ (aexp(At)
+ bexp(—At")x"?) cos(Q(t" —t") >
_ij;no ((a®? exp(24t") — b2 exp(—2At")) x''? —
(a?exp(2At)) —
b% exp(=2At"))x'?) 1, ( Mol ) (aexp(At’") +

ihsin((¢' -t

exp

bexp(—2At"))(aexp(At') + b exp(—/lt’))x”x’)

(31)
CONCLUSION

The study of quintals harmonic oscillators with time-
dependent mass has assumed because it is very important in
different areas of physics like plasma physics, cosmology,
quantum optics etc. Looking through the literature one can
notice in this context that the path integral method has been
used to solve some problems with specific time-dependent
mass like exponentially varying mass, strongly pulsating
mass, growing mass etc. In this paper we have used a space-
time transformations to solve a new generalized model. We
gave the related propagator to the harmonic oscillator. The
normalized eigen-function and the invariant operator are
found for the harmonic oscillator.
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