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Abstract 

 

The paper deals with the simulation of  dynamical models of  constrained multibody systems which can be formulated as a 

set of  Differential Algebraic Equations (DAEs). We consider the general dynamical model resulting from Euler-Lagrange 

formulation. We investigate the solution with the index reduction method. We illustrate our analysis by the example of the 

slider-crank mechanism. Among many possible representations, we derive a dynamical model based on two variables 

offering an easier analysis and implementation. We solve the DAE problem with a Matlab function (ode15s) which is 

dedicated to solve stiff Ordinary Differential Equations (ODEs). Concordant simulation results have been obtained in 

comparison to other methods proving an acceptable stability and accuracy of the used method for solving this problem. 

Mathematics Subject Classification (2000). Primary 70E55; Secondary 68U01. 
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Résumé   

 

Cet article traite de la simulation de modèles dynamiques des systèmes multicorps contraints qui peuvent être formulés 

comme un ensemble d'équations différentielles algébriques (EDAs). Nous considérons le modèle dynamique général 

résultant de la formulation d'Euler-Lagrange. Nous étudions la solution avec la méthode de réduction de l'index. Nous 

illustrons notre analyse par l'exemple du mécanisme bielle-manivelle. Nous déterminons un modèle dynamique basé sur 

deux variables offrant une analyse et une implémentation aisée. Nous résolvons le problème DAE avec une fonction de 

Matlab (ode15s) qui est dédié pour résoudre équations différentielles ordinaires (EDO) raides. 

Les résultats de simulation ont été comparés avec la méthode de partition des coordonnées. Des résultats similaires ont été 

obtenus prouvant une acceptable stabilité et  précision de la méthode utilisée pour résoudre ce problème. 
 
Mots clés : systèmes DAE, ODE, systèmes d'Euler-Lagrange, modélisation dynamique, systèmes multicorps. 

 
 

 .ملخصال

تناول المقال محاكاة النماذج الديناميكية لأنظمة  متعددة الاجسام المقيدة التي يمكن أن تصاغ على أنها مجموعة من المعادلات 
لاغرانج  . نحن ندرس الحل عن طريقة -التفاضلية الجبرية  (م ت ج  .)نحن نعتبر النموذج الحركي العام الناتج عن صياغة أويلر

رة.. لقد حصلنا على نموذج  ديناميكي  استندنا الى -لتوضيح تحليلنا نحن نستمد نموذجا من مثال آلية المنزلق تخفيض المؤشر.  ِّ مُدو 
(  لماتلاب وهو ode5sاثنين من المتغيرات التي تقدم أسهل التحليل والتنفيذ .تمكنا من حل المشكلة ( م ت ج  ) بواسطة  برنامج  )

العادية الشديدة.  وقد تم مقارنة نتائج المحاكاة  عن طريقة  تقسيم. الإحداثيات. و تم الحصول على  مخصص لحل المعادلات التفاضلية
 .ريقة المستخدمة  لحل هذه المشكلةنتائج مماثلة تثبت الاستقرار ودقة   الط

 .ODE ،DAEمذجة الديناميكية ، الأنظمة متعددة الاجسام   أويلر لاغرانج، أنظمة,، ، الن . المفتاحية:الكلمات 
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ntroduction : 

 

Constrained mechanical multibody systems can be 

found in various scientific and technologic applications 

such as robotics, biomechanics of locomotion,  vehicle 

engines,  and machinery [1, 2, 3,4]. Some  well 

established methods  are available for modeling 

constrained mechanical multibody systems such as 

Newton-Euler  Law,  Hamilton  principle,  and  

Lagrange multiplier, etc [1,2].   

From the mathematical point of view, the dynamic 

models of constrained multibody systems fall into two 

main categories: Differential Algebraic Equations 

(DAEs) and Ordinary Differential Equations (ODEs).  

The difference between ODEs and DAEs comes from 

the choice of the descriptive parameters used and the 

topology of the mechanisms. In particular, DAE 

systems are subject to geometric and physical 

constraints in their mechanisms. [1, 2]. 

Several techniques have been proposed to solve DAE 

systems [5,6, 7]. An obvious approach consists of 

differentiating the constraints one or more times with 

respect to time. Then to replace the geometric 

constraints by their derivatives to convert the DAE 

problem into a mathematically  equivalent ODE 

problem before applying some well known numerical 

integration methods. This approach corresponds to the 

index-reduction method. However, the main issue with 

this technique is that the numerical solution of the 

system may not satisfy the constraints of the original 

DAE problem due to error propagation known as drift-

off phenomena. This means that, in general, the pure 

mathematical equivalence between the DAE and ODE 

problems is sensitive and not necessarily preserved by 

the computational procedures used for their solution 

[7,8].  

According to the literature [8, 9], there are two main 

types of methods to solve this problem.  The first class 

methods aims to reducing the system description to a 

minimum number of coordinates by finding a set of 

independent coordinates. These are the projection 

methods. The system is described in state-space form. 

Among these methods, we can cite full reduction of the 

system to a purely ODE form, which can be obtained 

by means of the Coordinate Partitioning.  The second 

class of methods consists of index reduction of the 

original problem. It introduce additional unknowns 

leading to augment  the original system and then to 

apply stabilization techniques. 

In this paper, we consider the general dynamical model 

of the multibody systems obtained by means of Euler-

Lagrange formulation as a DAE problem. We illustrate 

our analysis and simulation by the example of the 

slider-crank mechanism. By manipulating the 

constraints equations, we derive a mathematically 

equivalent DAE model with two variables.  We solve 

the DAE problem by using a Matlab function dedicated 

to stiff ODEs systems (ode13s). Comparisons of our 

simulation results with other techniques will be presented. 

2 - The General formulation of the dynamic 
multibody systems: 

The Lagrange formulation is suitable for modeling 

constrained mechanical multibody systems. The modeling 

requires to define some parameters which are used for the 

system representation. These parameters are coordinates 

which enable to describe the positioning and the movement 

of the system.  

2.1-Dynamical Model: 

The equations of motion given by Euler-Lagrange 

formulation is a set of differential equations of a second 

order associated to a set of geometrical constraint equations. 

They are often expressed in the following form of a DAE 

problem [ 1,2, 8, 9]: 

),,(.).,,(
****

qqtFqqqtM T

q  
   (1)

     

                   0),(  qt                                  (2)     

Here, q is a vector of generalized co-ordinates, q˙ is a vector 

of generalized velocities. M(t, q, q˙) is the mass matrix du 

system de dimension (nxn), Φ is a vector of the constraint 

equations and λ is a vector of Lagrange multipliers [1, 2].   

q   is the Jacobian matrix of constraints.  
T

q
 
is the 

transpose of the Jacobian matrix of constraints. F(t, q, q˙) 

the vector of the generalized forces (other than the 

constraint forces). 

To determine uniquely a solution to this problem, it is 

necessary to add initial conditions which are associated to 

the set of differential equations: q(t0)=q0  and q˙(t0)= q˙0.  

These initial conditions have to satisfy the consistency of 

the constraints and their derivatives at any instant of time. 

2.2- State Space representation: 

Another common equivalent representation of the previous 

DAE problem uses the state space variables ( position 

coordinates p and velocities v).  The DAE problem can be 

written in the following form : 

 























0),,(

..

vpt

F
dt

dv
M

v
dt

dp

T

q 

                     (3) 
 

with initial conditions:  p (0) = p0, v (0) = v0.  The given 

vectors p0 and v0, which specify the initial configuration 

I 
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and initial velocity, are chosen so satisfy the 

consistency of the constraint equations and their 

derivatives. 

                  Ф(p0) = 0 

                  Фq(p0).v0 = 0 

2.3- Augmented DAE Representation 

The DAE systems are characterized by their 

differentiation index which is defined as the number of 

differentiation of the constraints in order to transform 

the DAE problem into a mathematical equivalent ODE 

one. In this case, the problem is index-3  [1-2, 6-9].  

Reducing the index by deriving twice the constraint 

equations, leads to transform the DAE problem from 

index-3 to index-1 as follows. 

Considering the position constraint equations: 

             

by deriving once, we get the velocity constraint 

equations: 0.
*

 qq        (4) 

by deriving twice, we obtain the acceleration constraint 

equations:

 ttqqqq qqqq
*****

..2.).(.     

        (5) 

By coupling the equations of motion (1) with the 

acceleration constraint equations (5), we can obtain the 

following DAE system: 
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



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




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





















FqM

q

T

q

**

0
                    (6) 

Assuming that the Jacobian q has full row rank, it can 

be proved that because the kinetic energy of a system is 

always positive, the coefficient matrix of the linear 

system above is nonsingular [6-9]. This means that a 

solution exists and is unique. We have a set of n 

generalized coordinates, they need to satisfy the set of 

m constraints present in the system: 

 (q,t0)  

This augmented system (6) is equivalent to Lagrange's 

equations (1), if and only if the initial conditions of the 

problem satisfy the constraint conditions. 

3-Dynamic Modeling of a  Slider-Crank System 

3.1- Variables selection  and Geometric 
Constraints: 

The graphical representation of the two-dimensional 

slider-crank mechanism is given in Fig.1. It is 

constituted of two mobile bodies: the crank (length l1 , mass 

m1, inertia  J1) and the coupler ( length l2. mass m2 , Inertia 

J2).  The slider has a mass m. To drive the system, the 

external effort (Mom) is exerted at the base of the crank 

element (point A), the crank rotates leading the slider to 

move left to right in the x-direction. We will be interested 

by the motion of the slider.  

 

Fig.1:  Slider-crank mechanism 

To describe the topology and the dynamic of the system,  

we can use absolute coordinates or relative coordinates 

which are joints. This selection affects the number and the 

nature of equations. In principle, we only need one 

coordinate such as θ1, but since there is not an obvious 

connection between θ1 and the complete configuration of 

the mechanism, we introduce other coordinates.  

Generally, to establish the constraint equations,  a possible 

choice is the three variables: the angles  ϴ1, ϴ2  and the 

horizontal displacement of the slider x. Considering the 

triangle ABC, we can get the following two constraint 

equations. 

 
     (7) 

      

     (8) 

 

We notice that we have two independent variables (ϴ1, x) 

and one dependant variable ϴ2. Since these two equations 

are redundant, then to simplify the problem formulation, we 

only use the first constraint equation, the second with be 

deduced once  ϴ1 and ϴ2 are determined. 

3.2- Dynamic Model of the Slider-Crank system: 

According to the Euler-Lagrange formulation, the 

dynamical model of the two dimensional slider crank 

mechanism can be formulated as a DAE  problem of the 

general following form (1) et (2): 

 

0),(

),,().,,(
****





qt

qqtFqqqtM
T

q 
 

To describe the system, many possible choice of variables 

can be selected [7-12]. As in [10], we have selected two 

variables ϴ1 and ϴ2. This choice enable to decouple the 

equations and facilitates expressions of the constraint 

derivatives.  We have reduced the system from index-3 to 
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index-1 by deriving twice the constraint.  The obtained 

expressions of  ),,(
*

qqtM  and  ),,(
*

qqtF  are : 
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
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           (9) 

    (10) 

Let's reconsider the first constraint equation (7). By 

deriving this constraint once w.r.t, we get the 

expression :    

  0
2

12cos21cos1cos.2.cos.1 *

*
*

2

*

11

*



















 llllqq

                    (11)

 

from which, we obtain the Jacobian:   

 

 2211 coscos  llq 
       (12)

 

and its transpose:     .
cos.

cos.

22

11


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






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
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l

l
T

q    

(13) 

 
To bring the problem into  index-1, we should derive 

twice the constraint equation. It gives: 

           
**

22

*
2

221

***
2

1

**

.cos.2.sin.2.cos.1.1sin.1.  llllqq 
         

(14) 

The expressions (9), (10), (12), (13) and (14) are used 

in order to obtain the augmented DAE form (6).  

We need also to add the initial conditions: 

101 )0(   , 10

*

1

*

)0(   , 

202 )0(   . 101 )0(   , 20

*

2

*

)0(   . 

4-Numerical Solution and simulation: 

4.1-Numerical solution: 
To solve the system (1) and (2) requires to predict the 

motion of the system (q(t); q˙(t)), from an initial 

configuration (q(t = 0); q˙(t = 0)), by time-integrating 

the accelerations q¨(t).  The augmented form (6) 

corresponds to a DAE index-1 problem. Since this DAE 

system contains time derivatives of second order, it has to 

be reformulated to obtain the form compatible with ODE 

like systems [14-16]:   

),().,(
*

ytfyytV     (15) 

   with initial conditions:    y(t0)=y0 

 

The resolution technique requires to 

augment the system by adding some 

other variables and equations.   

If we note:       

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and   define the state vector   as:      
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then, the augmented problem can be expressed in the form: 

  

(16) 

 

 

 
where V is a diagonal but singular matrix and E is a unit 

(2*2) matrix.  under this form, some implemented codes 

have been dedicated to solve  this  problem provided giving 

consistent  initial conditions. 
T

y














 0

**

20

**

01

*

20

*

012010  (17) 

To solve this problem, we have used the Matlab function: 

ode15s [12,14, 15]. It numerically integrates the system 

(15) which is expressed as  (16-17) from an initial time t0 to 

a final time tf. It has many advantages over ode45. It is 

recommended in case of stiff ODE and DAE problems. It 

can solve problems in form (16) with a V(t,y) matrix that is 

singular which is our case. It can check and adapt the 

consistency of the initial conditions. 

From the algorithmic point of view, ode15s is a variable-

order solver based on the Numerical Differentiation 

Formulas (NDFs) [4]. Optionally, it uses the backward 

differentiation formulas (BDFs, also known as Gear's 

method) that are usually less efficient. ode15s  is a 

multistep solver [13-15].  
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4.2-- Simulation and Graphical Results : 

The simulation has been performed with the ode15s. It 

has applied to the double  pendulum and to the slider 

crank mechanism. The obtained results have been in 

concordance with those obtained in the literature. In 

this section, we present in Fig.2 the graphical results 

concerning the slider-crank mechanism: the temporal 

evolutions of the angle ϴ1(t) and of the slider 

displacement x(t). We notice that x(t) has been 

computed a posteriori after calculating ϴ1(t) and ϴ2(t) 

from the constraint equation (8) as :

 
2211 sin.cos.  llx  .  This a posteriori checking 

has ensured the respect of the constraint equations 

during the calculations and thus ensuring the stability 

and the accuracy of the solver for these type of 

problems. 

The chosen parameters are: l1=0.2; l2= 1; m1=1; m2=1; 

J1 = 1; J2=1; m=1; Mom= 10; g= 9.81.  

The vector of initial conditions is:  y0 = [0.78    

asin((l1/l2)*sin(0.78))   0  0  0  0  0]T.  In our 

implementation, the initial value of ϴ10 is given, the 

second one  is computed automatically  by means of the 

first constraint (7) as ϴ20 = asin((l1/l2)*sin(ϴ10) to 

ensure the consistency of the constraint equations.  The 

matrix V is singular and its diagonal is:  diag(V) = 

[1,1,1,1,0,0,0];  

Fig.2: Temporal evolution of the angle ϴ1(t) 

Fig.3: Temporal evolution of the slider displacement x(t). 
 

The obtained results are similar to those obtained by the 

partitioning coordinates method  which uses conventional 

ODE systems and which has been applied to the same 

slider-crank mechanism [4]. Many other concordant results 

have been also noticed with other approaches applied to the 

slider-crank mechanisms [6-11]. A comparison of different 

numerical approaches  for solving the problem of the slider-

crank mechanism is reported in [16]. 

The simulation results and the concordance of the applied 

technique with the other techniques proving to conclude 

that the method is stable and accurate enough.   

5-Conclusion 

The paper has dealt with the analysis and simulation of  

some dynamical models of  constrained multibody systems 

which have been formulated as a set of  Differential 

Algebraic Equations (DAEs). We have investigate the 

solution with the index reduction method. We have 

illustrated our analysis by the example of the slider-crank 

mechanism. We have derived a dynamical model based on 

two variables offering an easier analysis and 

implementation. We have successfully solved the DAE 

problem with the Matlab function (ode15s) which is 

dedicated to solve stiff Ordinary Differential Equations 

(ODEs).  

Concordant simulation results have been obtained in 

comparison to other methods such as the partitioning 

coordinates method proving the stability and the accuracy 

of the used DAE method.  The choice of the variables for a 

particular derived model can influence the choice of the 

DAE resolution method and also the complexity and 

computation cost.  

These mathematical results have also enabled coherent 

physical interpretations of the functioning of the slider-

crank mechanisms. 
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