PREPARATION AND CHARACTERIZATION OF P-N HETEROJUNCTION CuBi₂O₄/CeO₂ AND ITS PHOTOCATALYTIC ACTIVITIES UNDER UVA LIGHT IRRADIATION

A. Elaziouti ^{1,2}, N. Laouedj ^{1,2}, A. Bekka ¹ and RN. Vannier ³

¹ LCMIA Laboratory of Inorganic Materials Chemistry and Application, Department of Physical Chemistry, University of the Science and the technology of Oran (USTO M.B), Oran, Algeria ²Dr. Moulay Tahar University, Saida, Algeria.

 3 Unit of Catalysis and Solid State Chemistry of Lille University, Lille, France. $^1\text{E-mail}:elaziouti_a@yahoo.com$

Reçu le 12/05/2014 – Accepté le 24/06/2014

Résumé

Les matériaux composites CuBi₂O₄/CeO₂ ont été synthétisés par voie des réactions à l'état solide puis caractérisés par la diffraction des rayons X, la microscopie électronique à balayage et la spectroscopie UV-Visible en mode de réflectance diffuse. L'efficacité photocatalytique de ces matériaux sous irradiation UVA vis-à-vis de l'élimination d'un polluant modèle en l'occurrence : le rouge Congo (RC). Le photocatalyseur en CuBi₂O₄/CeO₂ présentait un taux de conversion de polluant de 83,05 % au bout de 100 min de temps d'irradiation avec 30 % de CuBi₂O₄ à l'ambiance et à pH 7. Les réactions de photodégradation étaient satisfaisantes en corrélation avec le modèle cinétique de pseudo-premier ordre. Le mécanisme de l'efficacité photocatalytique amélioré a été expliqué par la charge modèle de séparation à hétérojonction.

Mots clé : CuBi₂O₄/CeO₂, hétérojonction, rouge Congo, efficacité photocatalytique, effet synergétique.

Abstract

 $CuBi_2O_4/CeO_2$ composite materials were synthesized by solid state method and were characterized by a number of techniques such as X-ray diffraction, scanning electron microscopy and UV–Vis diffuse reflectance spectroscopy. The photocatalytic activity of the materials was investigated under UVA light and assessed using Congo red (CR) dye as probe reaction. The CuBi_2O_4/CeO_2 photocatalyst exhibited the high efficiency as a result of 83.05% of decomposition of CR for 100 min of irradiation time with 30 wt % of CuBi_2O_4 at room temperature and a pH 7. The photodegradation reactions were satisfactory correlated with the pseudo-first-order kinetic model. The mechanism of the enhanced photocatalytic efficiency was explained by the heterojunction charge separation model.

Key words: CuBi₂O₄/CeO₂ heterojunction, Congo red, photocatalytic activity, synergy effect.

ملخص

حضرت المواد المركبة CuBi₂O₄/CeO₂ حسب طريقة الحالة الصلبة وتميزت بعدد من تقنيات مثل حيود الأشعة السينية، المجهر الإلكتروني والأشعة فوق البنفسجية في مواجهة منتشر الانعكاس الطيفي. وكان التحقيق في النشاط الحفز الضوئي تحت الضوء فوق البنفسجية وتقييمها باستخدام صبغ الكونغو الحمراء (CR) كنموذج تفاعل. أظهرت نتيجة نشاط الحفز الضوئي CuBi₂O₄/CeO₂ كفاءة عالية بمعدل تفكك 83.05% من الملوثات لمدة 100 دقيقة من الوقت الإشعاع مع 30% CuBi₂O₄ في درجة حرارة الغرفة ودرجة الحموضة 7. النشاط الحفز الضوئي مناسبة لنموذج الحركية من الدرجة الأولى. آلية تعزيز نشاط الحفز الضوئي من قبل نموذج انفصال الشحن في التوصيل غير متجانس.

الكلمات المفتاحية

التوصيل غير متجانس للكونغو الحمراء النشاط الحفز الضوئي تأثير التآزر

1-INTRODUCTION

The lanthanide cerium dioxide (CeO_2) has been attracting great interest in the recent years because of its effective technological applications, such as in solidstate electrolytes for electrochemical devices [1,2] catalysts for three-way automobile exhaust systems [3,4], abrasives for chemical-mechanical planarization [5], sunscreens for ultraviolet absorbents [6], the adsorption and reaction of formaldehyde [7], oxygen storage capacity [8], hybrid solar cells [9], H₂S removal [10] and luminescent materials for violet/blue fluorescence [11]. Cubic fluorite cerium dioxide (CeO₂), a semiconductor with a relatively narrow band gap of 2.7 and 3.4 eV depending to the technique of preparation [12], shows promising photocatalytic activity for the degradation of various organic dye pollutants such as Methylene Blue (MB), Methyl Orange (MO) and C.I. Reactive Black 5 (RB5) [33], CeO₂ has also successfully been employed in water splitting for H₂ production and phenol and chlorinated phenol photodegradation under UV illumination [34]. Although photocatalytic activity of CeO₂ has intensively been investigated, the broad band gap energy and the electronic potential position in the conductance and valence bands of this material seriously limit its further application as a photocatalyst utilizing solar energy [35]. Various strategies in liquid-phase system have been adopted for size-controlled synthesis of various functional nanomaterials, including transition metals doping [36], noble metals deposition [37], doping nonmetallic elements [13], doping transition metals surface photosensitization [14] and coupled polycrystallites or colloidal semiconductors [15]. Thus, improving photocatalytic activity by coupled semiconductor has become hot topic among researchers.

Coupling of two semiconductors with different gap level energies has been investigated band extensively in the last decade as one of the most effective ways to decrease the frequency of the recombination of electron-hole $(e^{-/h+})$ pairs [16]. Many coupled semiconductors systems, such as CeO₂/Fe₂O₃ [17], CeO_2/ZnO [18], $CeO_2/CeLnO_x$ (Ln = Pr, Tb, Lu) [19], CeO₂/TiO₂ [20], CeO₂/ZrO₂ [21], CeO₂/MnO_x $[22], CeO_2/Bi_2O_3$ $[23], H_3PW_{12}O_{40}-CeO_2/TiO_2$ and CeO₂/TiO₂ [20], CeO₂/CrO [25], CeO₂/MCM-41, CeO₂/MCM-48 and CeO₂/SBA-15 [26], CeO₂/SiO₂ [27], CeO₂/SrTiO₃ [28], CeO₂/Ag-AgCl [29],CeO₂/BiVO₄ [30], CeO₂, La₂O₃, C]/TiO₂ [31], CeO₂ /Co [32], have exhibited high photocatalytic efficiency owing to the improved charge separation and increased charge carrier lifetime.

In the present study, we have synthesized $CuBi_2O_4/CeO_2$ nanocomposite photocatalysts by solid state route. The as-prepared $CuBi_2O_4/CeO_2$ nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectroscopy (DRS). The

photocatalytic efficiency of the samples was assessed by the degradation of Congo red (CR) dye, as probe reaction, under UVA light. Effects of the amount of added CuBi₂O₄, UV light and catalysts were investigated. The experimental data were quantified by applying the pseudo-first order kinetic model. The mechanisms of the increase in the photocatalytic activity were also discussed through the heterojunction charge modele.

2-EXPERIMENTAL

2-1-Materials and methods

2-2-Materials

 α -Bi₂O₃ (99.99 %), CuO (99.99 %) and CeO₂ (99.99 %) materials were obtained from Aldrich chemical company ltd. Congo red azoic dye (C.I. 22020, MW = 696.67 g mol⁻¹, C₃₂H₂₄N₆O₆S₂.2Na, λ_{max} = 497 nm and pKa = 4) and other chemicals used in the experiments (NH₄OH and H₂SO₄) were purchased from C.I.S.A Espagne.

2-3-Preparation of p-CuBi₂O₄

The p-CuBi₂O₄ powder was prepared according to the previously reported procedure [38]. The stoichiometric proportion mixture of α -Bi₂O₃ and CuO oxides was previously ground for a period of time in an agate mortar, and then heated at the rate of 5 °C/min in a muffle oven (Linn High Therm) and thermally treated at 750 °C for 72 h in air. After the muffle oven was naturally cooled to room temperature, the black CuBi₂O₄ powder was ground in the agate mortar and then was collected as the precursor to prepare the CuBi₂O₄/CeO₂ photocatalysts.

2-4-Preparation of CuBi₂O₄ /CeO₂ photocatalyst

 $CuBi_2O_4/CeO_2$ nanocomposite photocatalysts were prepared by the solid state technique with the $CuBi_2O_4:CeO_2$ mass ratio of 5 : 95, 10 : 90, 20 : 80, 30 : 70, 40: 60 and 50:50. The corresponding precursors of $CuBi_2O_4/CeO_2$ were milled in an agate mortar for 30 minutes to form the nanosized photocatalysts.

2-5-Characterization

X-ray diffraction patterns of the powders were recorded at room temperature using an automatic D8 Bruker AXS diffractometer with CuK α radiation (λ =1.5406 Å) over the 2 θ collection interval of 10-70° with a scan speed of 10°/min. The mean grain size (d_{DRX}) was assessed using the Debye-Scherrer equation [39], as follows Eq. (1):

$$d_{DRX} = \frac{0.9 \lambda}{\beta \sin \theta}$$
 [1]

where D is the mean grain size (nm), λ is the wavelength (nm), is the corrected full width at half maximum (radian) and β is the Bragg angle (radian).

Where β is the corrected full-width at half maximum (FWHM) (radian), λ is the X-ray wavelength (1.5406 Å) and θ is the Bragg angle (radian). The lattice constants of the samples calculated from their corresponding XRD pattern data are obtained by Fullprof program. UV-Vis DRS measurements were carried out at room temperature using a Perckin Elmer Lambda 650 spectrophotometer equipped with an integrating sphere attachment. The analysis range was from 200 to 900 nm, and polytetrafluoroethylene (PTFE, Teflon) was used as a reflectance standard. The band gap values were estimated by extrapolation of the linear part of the plot of absorbance versus the wavelength and Eg = $1240/\lambda_{Absorp. Edge}$ equation assuming that all the prepared photocatalysts are direct crystalline semiconductors. Scanning electron microscopy observations (SEM) were performed by using Hitachi S-4800N.

2-6-Photocatalytic study measurements

The photodegradation of CR catalyzed by the CuBi₂O₄/CeO₂ samples was investigated under UV-light irradiation. 100 mg of catalyst was suspended in an CR solution (200 mL, 20 mg/L) in quartz cell tube. The suspension pH value was previous adjusted at 7 using NaOH/ H₂SO₄ solutions using (Hanna HI 210) pH meter. Prior to UV light irradiation, the suspension was stirred with magnetic stirrer (SpeedsafeTM Hanna) for 30 min under dark at 25 °C to ensure the establishment of adsorption/desorption equilibrium between the catalyst and CR. The sample was then irradiated at 298 K using 6 W ultraviolet (λ =365 nm, BLX-E365) photoreactor under continuous stirring. As the reaction proceeded, a 5 ml suspension was taken at 20 min intervals during the catalytic reaction and was centrifuged using centrifuge (EBA-Hetlich) at 3500 rpm for 15 min to completely remove photocatalyst particles. The residual RC concentrations during de course of degradation were monitored with UV mini-1240 Spectrophotometer (Shimadzu UV mini-1240) in the range 200 - 800 nm, using 1 cm optical pathway cells.

The effect of initial pH on the photocatalytic degradation of CR only conducted from pH 6 to 12 for avoiding dye aggregation. The experiments were also performed by varying the amount of $CuBi_2O_4$ from 0 to 100 wt %.

The data obtained from the photocatalytic degradation experiments were then used to calculate the degradation efficiency η ' (%) of the substrate Eq. (2):

$$n'(\%) = \left[\frac{(C_i - C_f)}{C_i}\right] 100$$
 [2]

where C_i dye initial concentration (mg·L⁻¹) and C_f : dye residual concentration after certain intervals (mgL⁻¹).

According to the Planck's Law and some further calculation, we can find that the absorption wavelength of the photoreactor can be done by determining its' band gap value Eq. (3):

$$E_{g} = \frac{1239 \text{ eV. nm}}{\lambda}$$
[3]

where *h* is Planck's constant (4.13566733 10⁻¹⁵ eV. s); *c* is the speed of light (2.99792458 10⁻¹⁷ nm/s) and λ is the UVA- light wavelength (355-375 nm). From the calculation, in order to absorb a UVA-light wavelength, the band gap value of the photoreactor has to be below 3.49 eV and above 3.30 eV.

The photocatalytic degradation efficiency of catalyst for the degradation CR was quantified by measurement of dye apparent first order rate constants under operating parameters. Surface catalyzed reactions can often be adequately described by a monomolecular Langmuir– Hinshelwood mechanism, in which an adsorbed substrate with fractional surface coverage θ is consumed at an initial rate given as follow Eq. (4) [40]:

$$-\left|\frac{dC}{dt}\right| = r_0 = K_{app}\theta = \frac{K_1 K_2 C_0}{1 + K_1 C_0}$$

$$\tag{4}$$

where K_1 is a specific rate constant that changes with photocatalytic activity, K_2 the adsorption equilibrium constant, and *C*o is the initial concentration of the substrate . Inversion of the above rate equation is given by Eq. (5):

$$\frac{1}{K_{app}C_0} = \frac{1}{K_1K_2} + \frac{C_0}{K_1}$$
[5]

Thus, a plot of reciprocal of the apparent first order rate constant $1/K_{app}$ against initial concentration of the dye C_0 should be a straight line with a slope of $1/K_1$ and an intercept of $1/K_1K_2$. Such analysis allows one to quantify the photocatalytic activity of catalyst through the specific rate constant K_1 (with larger K_1 values corresponding to higher photocatalytic activity) and adsorption equilibrium constant K_2 (K_2 expresses the equilibrium constant for fast adsorption-desorption processes between surface of catalyst and substrates). The integrated form of the above equation (Eq. 5) yields to the following Eq. (6):

$$t = \frac{1}{K_1 K_2} ln \frac{C_0}{C} + \frac{1}{K_2} (C_0 - C)$$
 [6]

where t is the time in minutes required for the initial concentration of the dye Co to decrease to C. Since the dye concentration is very low, the second term of the expression becomes small when compared with the first one and under these conditions the above equation reduces to Eq. (7).

$$\ln \frac{C_0}{C} \approx K_1 K_2 t = K_{app} t$$
[7]

where k_{app} is the apparent pseudo-first order rate constant, C and Co are the concentration at time 't' and 't=0', respectively. The plot of ln *Co/C* against irradiation time t should give straight lines, whose slope is equal to K_{app} .

The half-life of dye degradation at various process parameters was raised from Eq. (8).

$$t_{1/2} = \frac{0.5Co}{K_2} + \frac{0.693}{K_1 K_2}$$
[8]

Where half-life time, $t_{1/2}$, is defined as the amount of time required for the photocatalytic degradation of 50 % of CR dye in a aqueous solution by catalyst.

3-RESULTS AND DISCUSSIONS

3-1-XRD Analysis of (x wt%)CuBi₂O₄/CeO₂ composites

Figure 1 shows the XRD patterns of the as-synthesized (30 wt %) CuBi₂O₄/CeO₂ nanocomposites in comparison with those of CuBi₂O₄ precursor and pure CeO₂. Diffraction peaks of pure CeO₂ (Fig. 1a) at 20 of 28.02° , 33.11°, 47.45°, and 56.3° can be indexed as the (111), (200), (220), and (311) planes of pure fluorite phase CeO₂, which is in good agreement with standard value (Fm.3m, JCPDS file no. 34-0394) with lattice constant a=5.4110 (2) Å. This is in agreement with the reported previous work [41]. The diffraction peaks of the Cubi₂O₄ precursor (Fig. 1b) at 2θ of 28.03° , 29.73° , 30.73° , 32.54° , 33.36° and 46.7° were respectively indexed as (211), (220), (002), (102), (310), and (411) planes of pure tetragonal phase of crystalline Cubi₂O₄, according to the Joint Committee Powder Diffraction Standards (P42/mnm, JCPDS file no. 42-0334) with lattice constants (a = 8.5004A°, c = 5.819A°) calculated from their corresponding XRD pattern data are obtained by Fullprof program. Both precursor CuBi₂O₄ and pure CeO₂ show preferred (002) crystallographic orientation owing to the preparation route of the sample during the XRD analysis. The crystallite sizes of pure CeO_2 deduced from the XRD patterns by calculation of the Scherrer equation showed that crystalline size of the composite, d_{XRD} was calculated to 100 nm.

On the other hand, the XRD patterns of (30wt %) $CuBi_2O_4/CeO_2$ nanocomposites exhibited characteristic diffraction peaks of both $Cubi_2O_4$ and CeO_2 crystalline phases. It can be seen from Fig.1c that at 30 % mass concentration of $Cubi_2O_4$, the diffraction pattern of the materials was quite similar to that of pure CeO_2 . This is probably due to the high crystallinity of the CeO_2 phase, thus appearing as the dominant peaks in the XRD spectra of the nanocomposite sample. Here, we observe that the XRD patterns (Figure 2) in the 2θ

Thus the presence $Cubi_2O_4$ promotes the crystallinity and a consequent broadening of the diffraction peaks of the (30 wt %) $CuBi_2O_4/CeO_2$ nanocomposites range from 25° to 40° show that (30 wt %) CuBi₂O₄/CeO₂ nanocomposites sample exhibits broadened peaks with a little shift toward higher intensities. Based on the Scherrer equation, the crystallite size of a sample is inversely proportional to the full-width-half-maximum (FWHM), indicating that a broader peak represents smaller crystallite size [42].

Diffraction angle 2θ (degrees)

Figure 1 XRD patterns of pure CeO_2 (a) precursor $CuBi_2O_4$ (b) and the synthesis (30 wt %) $CuBi_2O_4/CeO_2$ (c).

Figure 2 XRD patterns of pure CeO₂ (a) precursor CuBi₂O₄ (b) and the synthesized (30 wt %) CuBi₂O₄/CeO₂ (c), in the 2θ range from 25° to 40°.

SEM analysis

Figure 3 illustrates typical SEM images of CuBi₂O₄ powder synthesized by solid-state reaction of CuO and α -Bi₂O₃ at 750 °C for 24 h (figure 3a) and pure CeO₂ (figure 3b) shows typical high-resolution SEM

image of CuBi₂O₄ powder. As shown in figure 3a, it clearly shows two different crystal shapes on the CuBi₂O₄ surface, corresponding to two different particle sizes of CuBi₂O₄. The appearance of CuBi₂O₄ is a shape sheet and a well-defined tetragonal phase with the crystallite diameter of the CuBi₂O₄ is about 5 μ m, where as groups of smaller particles do not have any specific

shape with size up to 500 nm tend to cover the bigger particles. However, pure CeO₂ from SEM analysis (figure 3b) clearly shows two different spherical-shaped nanoparticles structures on the CeO₂ surface, which can be assigned to CeO₂ with a particle size in the range of 100 nm and Ce₂O₃ with approximately 200 nm dimensions, which agrees with the UV–Vis diffuse reflectance of Ceria. Both nanoparticles are close to each other in the form of chains. The as synthesized (30 wt%)CuBi₂O₄/CeO₂ nanocomposite (figure 4) clearly shows the presence of CeO₂ nanoparticles deposited onto the CuBi₂O₄ surface, displaying a particle size of 100-200 nm and strong assembly of the nanoparticles measuring from 200 nm to 1 µm. surface area.

Figure 3 SEM images of (a) high-resolution of precursor $CuBi_2O_4$ (b) pure CeO_2

Figure 4 SEM image of (30 wt %) $CuBi_2O_4/CeO_2$ nanocomposite.

3-2-UV–Vis Diffuse Reflectance Spectra and Band Gap Energy.

Figures 5 and 6 show the UV-vis absorbance spectra of CuBi₂O₄ and pure CeO₂ respectively. It is clear from the recorded UV-visible spectrum of CeO₂ that two absorption bands are observed in the UV region at 345 and 245 nm. Generally, the absorption of ceria in the UV region originates from the charge-transfer transition between the O 2p and Ce 4f states in O²⁻ and Ce⁴⁺. This spectral profile indicates that charge-transfer transition of Ce⁴⁺ overlaps with the $4f^1 \rightarrow 5d^1$ transition of Ce^{3+} [43]. It can be seen from figure 5, that it has strong and broad absorption in the range of 200-900 nm. This suggests that the prepared sample absorb both UV and visible light. Obviously, for CuBi₂O₄ nanostructures, the broad absorption band observed in the UV-visible region was attributed to the chargetransfer transition between the O 2p and Cu 3dx²-y² states in O^{2-} and Cu^{2+} respectively [44].

Figure 6 shows UV–Vis DR spectra of a series of photocatalysts (x wt %) CuBi₂O₄/CeO₂. It can be seen that the absorption wavelength range of the (x wt %) CuBi₂O₄/CeO₂ is extended greatly toward visible light and its absorption intensity is also increased in comparison with pure CeO₂. The red-shift observed in the CeO₂ would be explained by the formation of localized states within the band gap owing to oxygen vacancies and increase Ce³⁺ ion concentration. This phenomenon is due to the shift of absorbance band shift towards the longer wavelength [45].

The onset absorption edges and band gap energies of $CuBi_2O_4$, CeO_2 and (x wt %) $CuBi_2O_4/CeO_2$ samples are shown in figures 5 and 6 respectively. The as-synthesized $CuBi_2O_4$ exhibits an absorption onset at 900 nm, which correspond to band gap energy of 1.38 eV. It is clear from the recorded spectrum, that CeO_2 nanocrystalline has two absorption onsets at 390 and 520 nm, which match to band gap energies of 3.18 and 2.38 eV, attributing to CeO_2 dioxide and Ce_2O_3 sesquioxide respectively. These results are in well agreement with values reported in the literature [46, 47]. The optical properties of the as-synthesized $CuBi_2O_4$ and pure CeO_2 nanoparticles are reported in table 1

It is widely accepted that electronic transport properties depend on the physical and structural characteristics of photocatalyst, such as crystallite size, morphology, phase structure and amount of CuBi₂O₄ loaded. As reported from the UV-vis DRS in Figure 7 and table 2, for the series of (x wt %) CuBi₂O₄/CeO₂ nanocomposites, the band gap energy decreased from 3.18 to 3.12 eV as the amount of CuBi₂O₄ was increased up to 40 % on the CeO₂ matrix, suggesting that the physical preparation of nanocomposite powders will result in good particle-to-particle connections, especially in cases where a high electrical conductivity [48]. So, the decrease of the band gap energy with an enhanced absorption intensity of the (30 wt %) CuBi₂O₄/CeO₂ nanocomposites upon loading the amount of CuBi₂O could be ascribed to the homogeneous dispersion of CuBi₂O₄ within the CeO₂ matrix in the bulk of the catalyst and the formation of conducting network at very low temperature.

Figure 5 UV-visible absorbance spectra of pure C

Figure 7 UV-visible absorbance spectra of a series of (x wt %) $CuBi_2O_4/CeO_2$ nanocomposites

Figure 6 UV-visible absorbance spectra of CuBi₂O₄ synthesized by solid-state reaction at 750 °C for 24 h

Table 1	Optical	properties of	of the as-syntl	nesized CuB	i_2O_4 and	pure CeO ₂	nanoparticles
---------	---------	---------------	-----------------	-------------	--------------	-----------------------	---------------

Systems	λ (nm)	Charge-transfer transition	Band gap Eg (eV)		
	()	58	Experimental	Literature Ref.	
CuBi ₂ O ₄	900	$2 p^{6}(\mathrm{O}) \rightarrow 3 \mathrm{dx}^{2} \mathrm{-y}^{2}(\mathrm{Cu})$	1.38	1.5	
CeO ₂	390	$2 p^6(\mathrm{O}) \rightarrow 4 f^0(\mathrm{Ce})$	3.18	2.7-3.4	

Amount of CuBi ₂ O ₄ (%)	Charge-transfer transition $2 p^{6}(O) \rightarrow 4 f^{0}(Ce)$		Charge-transfer transition $4f^{0}(Ce) \rightarrow 4f^{1}(Ce)$	
_	λ (nm)	Band gap Eg (eV)	λ (nm)	Band gap Eg (eV)
0	390	3.18	520	2.38
20	390	3.18	495	2.51
30	395	3.14	500	2.48
40	397	3.12	490	2.53

Table 2 Optical properties of a series of (x wt %) CuBi₂O₄/CeO₂ composites

3-3-Photocatalytic activity tests

3-3-1. Effect of the amount of CuBi₂O₄ on the photocatalytic activity of (x wt %) CuBi₂O₄/CeO₂

The effect of the amount of CuBi2O4 on photocatalytic degradation of CR was conducted over a range of catalyst amount from x = 0 to x = 100 wt %. As observed in figure 8, it is evident that the photocatalytic redox of CR greatly depends on the amount of doped CuBi₂O₄. The photocatalytic activity increased drastically from 14. 928 % to 83.054 % as the catalyst amount was raised from x = 0 to x = 30 wt %. Further increase in the $CuBi_2O_4$ amount beyond of x = 30 wt %, the photocatalytic activity decreased gradually, almost reaching 3.13 % at x = 100 wt %. The maximum photocatalytic activity of (x wt %) CuBi₂O₄/CeO₂ (83.054 %) under UVA- light irradiation was achieved within 100 min of light illumination time when the amount of doped $CuBi_2O_4 \times was 30$ wt %. So there is an optimum CuBi₂O₄ contents for high dispersion morphology of nanoparticles CuBi₂O₄ on the CeO₂ surface with high activity.

The effective electron-hole separation both at the physically bonded interfaces and in the two semiconductors as well as charge defect during the physical mixing method was believed to be mainly responsible for the remarkably enhanced photocatalytic activity of (30 wt %) CuBi₂O₄/CeO₂ in the course of the photocatalytic redox conversion of CR.

But until now, there are no reports about synergistic effect between CeO_2 and $CuBi_2O_4$ in the (30 wt %) $CuBi_2O_4/CeO_2$ composite under visible light excitation. From figure 8, it is clear that the photocatalytic activity of CeO_2 is drastically increased under the presence of an amount of $CuBi_2O_4$ (30 wt %) compared to pure CeO_2 and the $CuBi_2O_4$ samples. These results strongly suggest the existence of a synergistic effect between CeO_2 and the $CuBi_2O_4$ in the (30 wt %) $CuBi_2O_4/CeO_2$ composite under UVA light excitation. However, at higher amount of doped CuBi₂O₄ than 30 wt %, the photocatalytic redox activity of (x wt%) CuBi₂O₄/CeO₂ photocatalyst was obviously decreased on further increase in amount of CuBi₂O₄. Thus, such an above occurrence in the present experiment is primarily attributed to overlapping of adsorption sites of CeO₂ particles as a result of overcrowding of the CuBi₂O₄ granule owing to the decrease in screening effect and interfering of light. An analogous trend was reported in the reduction of Cr₂O₇²⁻ and photocatalytic oxidation of methylene blue orange (MB) using p-n heterojunction photocatalyst CuBi₂O₄ /Bi₂WO₆ [49].

Figure 8 Effect of the amount of CuBi₂O₄ on the photocatalytic redox of CR under UV light irradiation ([Catalyst] = 0.5 g/L, [CR]= 20 mg/L, pH = 7, T = 298 K, λ_{max} = 365 nm, I = 90 J /cm² and irradiation time = 100 min).

3-3-2. Effect of UV light and catalyst

The photocatalytic activities of all three $CuBi_2O_4$, CeO_2 , (30 wt %) $CuBi_2O_4/CeO_2$ photocatalysts were assessed by the photocatalytic redox reaction of Congo red (CR) aqueous solution under UVA-light irradiation. Variations of CR reduced concentration (C/C₀) versus visible-light irradiation

time (t) over different catalysts under different through UV-A experimental conditions alone. UVA/CuBi₂O₄, UVA/CeO₂, (30 wt %) CuBi₂O₄/CeO₂ and UVA/(30 wt %) CuBi₂O₄/CeO₂ are presented in figure 8, Results showed that (30 wt %) CuBi₂O₄/CeO₂ exhibited higher photocatalytic performance, as compared to the single phases CuBi₂O₄ and CeO₂. The highest efficiency was obtained, under UV-light irradiation over (30 wt %) CuBi₂O₄/CeO₂, as a result of 83.05 % degradation of CR for 100 min of irradiation time. However, the photocatalytic degradation of CR over single phases CuBi₂O₄ and CeO₂ were only 3.13 and 14.92 % respectively. When 20 mg/L of CR along with (30 wt %)CuBi₂O₄/CeO₂ was magnetically stirred for the same optimum irradiation time in the absence of light, lower (21.48 %) degradation was observed, whereas, disappearance of dye was negligible (0.49 %)in the direct photolysis. On the basis of these results, the high decomposition of CR dye in the presence of (30 wt %) CuBi₂O₄/CeO₂ catalyst is exclusively attributed to the photocatalytic reaction of the combined semiconductor particles under UV light irradiation. Thus, such an above occurrence in the present experiment is primarily assigned to the charge defect during the physical mixing method, which is advantageous for the effective electron-hole separation and the suppression of the recombination rate of the photogenerated charge carriers.

3-3-3. Kinetic modelling

The photocatalytic degradation of CR over different experimental conditions was displayed in table 3. As it can be seen, the straight lines for the entire as-prepared samples of the plots of ln C/C₀ versus t with high regression coefficients ($R^2 = 0.892-0.939$), for the pseudo-first-order kinetic model strongly suggest that all the photodegradation systems were a pseudo-first-order model. Exception was observed in the cases of photodegradation and adsorption reactions in the presence of the single phase CuBi₂O₄ and the combined semiconductors respectively.

Figure 9 Photocatalytic degradation kinetics of CR at different experimental conditions ([Catalyst] = 0.5 g/L, [CR] = 20 mg/L, pH = 7, T = 298 K, λ_{max} = 365 nm, I=90 J /cm² and irradiation time = 100 min).

4-Discussion of mechanism

The above analysis shows that the migration direction of the photogenerated charge carrier depends on the band edge positions of the two semiconductors. There are three methods to determine the band edge positions: experiments based on photoelectrochemical techniques, calculation according to the first principle, and predicting theoretically from the absolute (or Mulliken) electronegativity [50-52]. The first one is not always easy to handle, and the second one cannot obtain the absolute energy of band edges with respect to vacuum and always has large discrepancies between calculated and measured values. The third one is a simple approach with reasonable results for many oxides photocatalysts [45].

The conduction band edge of a semiconductor at the point of zero charge (pH zpc) can be predicted by Eq. (14) :

 $E^{0}_{CB} = \chi - E_{C} - 1/2Eg.$ [14]

where χ is the absolute electronegativity of the semiconductor (χ is 5.56 eV and 4,75 eV for CeO₂ and CuBi₂O₄, respectively). EC is the energy of free electrons on the hydrogen scale (4.5 eV) and Eg is the band gap of the semiconductor. The predicted band edge positions of CuBi₂O₄, CeO₂ and Ce₂O₃ by the above equation are shown in table 4. Photocatalytic reaction proceeds owing to holes and electrons generated in materials by absorbing light energy. The photogenerated holes have oxidation ability and the photogenerated electrons have reduction ability. For decomposition of organic pollutants by photocatalytic reaction, the oxidation potential of hole needs to be more positive than + 1 V that is redox potential of

general organic compounds as well as of hydroxyl radical (E₀ (H₂O/ $^{\circ}$ OH)) = 2.8 V/ NHE. In addition, the redox potential of electrons needs to be more negative than that of superoxide radical (E₀ (O₂/O₂ $^{\bullet}$) = -0.28 V/NHE.

The as-prepared CuBi₂O₄ is a p-type semiconductor, which always exhibits good stability under UV-visible illumination, and CeO₂ is determined as an n-type material. Figure 10 and 11 depict reaction schemes of CuBi₂O₄ and CeO₂ as the p and n an type charge separation respectively for for the reductivity/oxdizability improvement model. According to Figure 14, when the $CuBi_2O_4$ and CeO_2 photocatalysts are irradiated under UVA (365 nm) light, both catalysts CuBi₂O₄ and CeO₂ can be activated since the band gap energies of CuBi₂O₄ observed in this study were 3.18 and 1.38 eV respectively.

For the p-CuBi₂O₄ (figure 10), the electronic potential of the conduction band bottom of p-CuBi₂O₄ is around - 0.44 eV/NHE which is more negative than that of superoxide radical (E₀ (O_2/O_2^{-1}) = -0.28 V/NHE. This indicated that the electron photoproduced at the conduction band directly reduced O_2 into O_2^{\bullet} . These reduced O_2 can subsequently transfer the charge to the species present in the reaction medium that are preferentially adsorbed onto the p-CuBi₂O₄ particles. Hence, the superoxide radical (O2-) reduce the recombination of the charge carriers enhancing the activity in the UVA light. However, the p-CuBi₂O₄ valence band top of + 0.94 eV/NHE, which is too negative than that of hydroxyl radical (E_0 (H_2O/OH)) = +2.8 V/NHE. The holes photogenerated in the p-CuBi₂O₄ are not able to oxidize H₂O to 'OH. But it is approximately enough to decompose organic pollutants. The presence of non stoechiometric regions of the nominally p-CuBi2O4 particles or small domains of binary oxide phases of Cu_xO or Bi_xO, undetected by XRD data, as unstable impurity phases which could be originated from a number of processes such as reduction of the p-CuBi₂O₄, could be responsible for higher recombination rates [43].

On the order hand, pure CeO_2 (figure 11) shows little photocatalytic activity under UVA light. Since the top of the valence band of CeO₂ is around +2.65 eV/NHE and the bottom of the conduction band of CeO₂ is around -0.53 eV/NHE, we expect that photogenerated electrons at the conduction band of CeO₂ can directly reduced O₂ into O₂⁻ because electronic potential of the conduction band bottom of CeO_2 (- 0.53 V/NHE) which is more negative than that of superoxide radical (E₀ (O_2/O_2^{-}) = -0.28 V vs. NHE at pH 7). In contrast, the CeO₂ valence band top of + 2.65eV/ NHE is more anodic than that of hydroxyl radical $(E_0 (H_2O'OH)) = + 2.8 V/NHE$, indicating that the photogenerated holes in the CeO2 cannot oxidize H2O to 'OH. These reduced O2⁻ species can subsequently transfer the charge to the present in the reaction

medium. Thus, the superoxide radical (O_2^{-}) suppress the recombination of the charge carriers enhancing the photocatalytic activity in the UVA light as well.

Moreover, the reduction of Ce⁺⁴ to Ce⁺³ requires a potential of + 1.61 V/NHE and oxidation of Ce^{+3} to Ce^{+4} requires - 1,61 V/NHE. The bottom of the conduction band of CeO_2 is around - 0.53 eV/NHE, is more anodic than that of Ce⁺⁴ to Ce⁺³ reduction potential. Hence, the photogenerated electrons at the conduction band of CeO₂ can directly reduced Ce⁺⁴ to Ce^{+3} . Also, the CeO₂ valence band top of + 2.65 eV/NHE is more positive than Ce^{+3} to Ce^{+4} oxidation potential. The photogenerated electrons at the valence band of CeO_2 can hence oxidize Ce^{+3} to Ce^{+4} . These reduced Ce^{+3} and oxidized Ce^{+4} species can In a contrast experiment, p-CuBi2O4/n-CeO2 composite exhibits higher activity than phases p-CuBi₂O₄ and n-CeO₂. The possible reason for the remarkably enhanced photocatalytic performance of p-CuBi₂O₄/n-CeO₂ in the course of the photocatalytic redox of Congo red can be explained by p-n type heterojunction formation model of the electron-hole separation process under UV light irradiation. The schematic diagram p-n heterojunction formation model is depicted in figure 10.

with wavelengths below 900 nm, whereas n-CeO₂ with band gap of is about 3.18 eV can be excited by photons with wavelengths of 390 nm. So at the interfaces of p-CuBi₂O₄ loaded n-CeO₂ composite, a p-n heterojunction would be formed.

According to the band edge position (table 1), the electronic potential of the conduction band bottom of n-CeO₂ is slightly more anodic than that of p-CuBi₂O₄, whereas, the hole potential of the valence band top of n-CeO₂, which is more positive than that of p-CuBi₂O₄. Under UVA (λ_{UVA} =355-375 nm \rightarrow E_{hv}=3.30-3.49eV) light irradiation, the energy of the excitation light was large enough to yield an excited state of both p-CuBi₂O₄ (λ _{CuBi2O4} = 900nm \rightarrow E_g = 1.38 eV) and n-CeO₂ ($\lambda_{CeO2} = 390 \text{ nm} \rightarrow E_g = 3.18 \text{ eV}$) semiconductors. A part of the photogenerated charge carriers, free vacancy-a hole (h⁺), electron (e⁻) and electronic recombines in the bulk of the semiconductors, while the rest transfer in the photocatalyst surfaces being partially localized on structural defective centers of its crystalline lattice..

So, when p-type semiconductor CuBi_2O_4 and n-type semiconductor CeO_2 were connected to each other, p–n heterojunction will be formed between p- CuBi_2O_4 and n- CeO_2 , and at the equilibrium the inner electric field will be also produced at the same time in the interface. So a number of micro p–n heterojunction $\text{CuBi}_2\text{O}_4/\text{CeO}_2$ photocatalysts will be formed after doping p- CuBi_2O_4 powder into n- CeO_2 granule. The electron-hole pairs will be created under UV light illumination. With the effect of the inner electric field, the holes can transfer from n- CeO_2 to p- CuBi_2O_4 easily, but the electrons cannot move from n-CeO₂ to p-CuBi₂O₄. If electrons transferred to p-CuBi₂O₄, the photocatalytic activity would decrease because of recombination. Although the transfer of electrons is feasible for the potential between the two conduction bands, it is blocked because of the inner electric field. So the minor carrier in n-CeO₂, which is the control factor of recombination in this n-CeO₂ semi-conductor, can transfer out. In this way, the photoinduced electron (e⁻)-hole (h⁺) pairs in the two semiconductors were effectively separated by the p-n junction formed in the CuBi₂O₄/CeO₂ catalyst and transferred to the semiconductor/substrate interfaces efficiently, thus the probability of electron-hole recombination was reduced. As a result, a larger amount holes on p-CuBi₂O₄ surface and a net effect of electrons on n-CeO₂ surface acting as powerful oxidants respectively Eq.(15-16). The stepwise photocatalytic mechanism is illustrated below:

$$\begin{array}{ll} p\text{-}CuBi_2O_4/n\text{-}CeO_2+hv \rightarrow p\text{-}CuBi_2O_4(e^-_{BC}+h^+_{BV})/n\text{-}\\ CeO_2(e^-_{BC}+h^+_{BV}) & [15] \\ \rightarrow & p\text{-}CuBi_2O_4(e^-_{BC}+h^+_{BV})/n\text{-}CeO_2(e^-_{BC}) & [16] \end{array}$$

The photogenerated electrons as well as holes act as powerful oxidants, respectively. The photogenerated electrons at the conduction band of n-CeO₂ can directly reduced Ce⁺⁴ to Ce⁺³ Eq. (17) and react with the adsorbed molecular O_{2ads} on the p-CuBi₂O₄/n-CeO₂ catalyst sites, reducing it to superoxide anion (O⁻_{2ads}), hydroperoxide (HO_{2ads}) radicals and hydrogen peroxide (H₂O_{2 ads}) Eq. (18-20), while the photogenerated holes at the valance band of p-CuBi₂O₄ can oxidize either the CR dye molecule directly Eq.(21) or both hydroxyl ions and water molecules adsorbed on the photocatalyst surface forming the organic cation-radicals (R^{+}_{ads}) Eq. (22), and hydroxylic radicals (HO_{ads}) Eq. (23). These processes could be represented in the following equations:

Ce^{+4}	$+ e^{-} \rightarrow$	Ce ⁺³	[17]

 $e^- + O_{2 ads} \rightarrow O^-_{2 ads}$ [18] $O^-_{2 ads} + 2H_2O_{ads} \rightarrow HO_2^- + OH^-_{ads}$ [19]

$$HO_{2 ads} + H_{2}O_{ads} \rightarrow H_{2}O_{2 ads} + OH_{ads}$$
[20]

$$R_{ads} + h^+ \rightarrow R_{ads}^+$$
 [21]

$$\text{HO}_{ads}^{-} + h^{+} \rightarrow \text{OH}_{ads}^{+}$$
 [22]

 H_2O_{ads} + $h^+ \rightarrow OH_{ads}$ + H^+ [23] The hydroxylic, peroxide and hydroperoxide radicals formed on the illuminated p-CuBi₂O₄/n-CeO₂ catalyst surface via either a photoexcitement of CeO₂ semiconductor and/or photosensibilization of CuBi₂O₄ are highly effective oxidizing agent in the p-CuBi₂O₄/n-CeO₂ mediated photocatalytic oxidation of Congo red Eq. (24).

(OH, O_2^{\bullet}) + CR dye \rightarrow degradation of the CR dye [24]

The primary raison for the observed maximum photocatalytic actibity of the p-CuBi₂O₄/n-CeO₂ nanocompsites can be attributed to p-CuBi₂O₄ being less active than n-CeO₂. At 30wt% p-CuBi₂O₄ loading, the amount of Ce⁺⁴ /Ce⁺³ present on the p-CuBi₂O₄/n-CeO₂ nanocompsites surface is favorable for faster charge transfer and at the same time allows light to reach the p-CuBi₂O₄/n-CeO₂ surface. Similar trend was reported in the efficient Photocatalytic Degradation of Phenol over Co₃O₄/BiVO₄ Composite under Visible Light Irradiation [53].

Table 3 Kinetic parameters of photocatalytic degradation of CR on (30 wt%)CuBi₂O₄/CeO₂, compared to the pure and combined catalysts systems ([Catalyst] = 0.5 g/L, [CR] = 20 mg/L, pH = 7-8, T = 298 K, λ_{max} = 365 nm, I = 90 J /cm² and irradiation time = 100 min).

Systems	η (%)	η' (%)	$\frac{K_1}{(\min^{-1})}$	t _{1/2} (min)	R ² (%)
RC/UV-A	-	0.49	-	-	_
RC/(30 wt %) CuBi ₂ O ₄ -CeO ₂	21.48	-	-	-	-
RC/CeO ₂ /UVA	8.00	14.92	0.0024	288.811	0.892
RC/(30 wt %) CuBi ₂ O ₄ -CeO ₂ /UVA	17.30	83.05	0.0133	52.116	0.939
RC/CuBi ₂ O ₄ /UVA	0	3.13	0.0002	3465.736	0.203

Catalyst	χ (eV)	λ (nm)	Eg (eV)	$E^{0}_{BC}(eV)$	E ⁰ _{BV} (eV)
CuBi ₂ O ₄	4,75	900	1,38	-0.44	+0.94
CeO ₂	5,56	390	3.18	-0.53	+2,65
Ce ₂ O ₃	5,20	520	2.38	-0.49	+1.89

Table 4Absolute electronegativity, estimated band gap, energy levels of calculated conduction band edge, and
valence band at the point of zero charge for $CuBi_2O_4$, CeO_2 and Ce_2O_3

Figure10 Reaction schemes of $CuBi_2O_4$ (a) and CeO_2 (b) as the p and n an type respectively for charge separation for the reductivity/oxdizability improvement model (electron \bigcirc and hole \bigcirc .

Figure 11 Reaction scheme of $CuBi_2O_4/CeO_2$ as the pn type charge separation for the reductivity/oxdizability improvement model (electron \bigcirc and hole \bigcirc).

CONCLUSION

Novel p-CuBi₂O₄/n-CeO₂ composite photocatalysts with different mass ratios were synthesized with the grinding–annealing method. The as-prepared p-CuBi₂O₄/n-CeO₂ nanocomposite were characterized by XRD, SEM and UV–vis DRS technique. For the photocatalytic redox reaction of CR in aqueous medium, the composite photocatalyst exhibits enhanced photocatalytic activity under UVA

light irradiation. The highest efficiency was observed at 30 wt % p-CuBi₂O₄ content as a result of 83.05 % of photoactivity for 100 min under UVA light at pH 7 and 25 °C. The effective electron-hole separation at the bonded interfaces and in the two semiconductors was believed to be mainly responsible for the remarkably enhanced photocatalytic activity of 30 wt % CuBi₂O₄ /CeO₂ in the course of the photocatalytic redox conversion of CR. The mechanism of the increased photocatalytic activity of (30 wt %) CuBi₂O₄/CeO₂ photocatalyst has been discussed by calculated energy band positions. The efficient electron-hole separation process in the p-n heterojunction semiconductors under UV light irradiation was considered to be mainly responsible for the obviously improved photocatalytic activity of (30 wt %) CuBi₂O₄/CeO₂ catalyst in the course of the photocatalytic redox conversion of Congo red. These findings should be valuable for designing effectively photocatalyst and can be an alternative compound in a variety of areas, such as sensor technology, optical coatings, electrochromic materials and environment.

REFERENCES

- M. Mogensen, N. M. Sammes, G. A. Tompsett, Physical, « chemical and electrochemical properties of pure and doped ceria », *Solid State Ionic*, 129, 2000, pp. 63-64.
- [2] M. Yashima, S. Sasaki, Y. Yamaguchi, M. Kakihana, M. Yoshimura, T. Mori, « Internal distortion in ZrO₂–CeO₂ solid solutions: Neutron and high-resolution synchrotron x-ray diffraction study », *Applied Physics. Letter*, 72, 1998, pp.182.
- [3] K. Nikolaou, «Emissions reduction of high and low polluting new technology vehicles equipped with a CeO2 catalytic system » *"Science and Total Environment,* 235, 1999, pp.71.
- [4] M. Ozawa, « Role of cerium-zirconium mixed oxides for car pollution », *Journal of Alloy* and Compounds, 275/277, 1998, pp.886-890.
- [5] X. Feng, D. C. Sayle, Z.L.Wang, M. S. Paras, B. Santora, A. C. Sutorik, T. X. T. Sayle, Y. Yang, Y. Ding, X. Wang, Y. Her, « Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres », *Science* 312, 2006, pp. 1504-1508.
- [6] N. Imanaka, T. Masui, H. Hirai, G. Adachi, «Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials », *Chemical Materials*, 15, 2003, pp.2289-2291
- [7] J. Zhou, D. R. Mullins, « Adsorption and reaction of formaldehyde on thin-film cerium oxide », *Surface Science*, 600, 2006, pp.1540-1546.
- [8] N. Kakuta, N. Morishima, M. Kotobuki,T. Iwase, T. Mizushima, Y. Sato, S. Matsuura, « Oxygen Storage Capacity (OSC) of Aged Pt/CeO₂/Al₂O₃ Catalysts, Roles of Pt and CeO₂ supported on Al₂O₃ », *Applied Surface science*, 121/122, 1997, pp.408-412.
- [9] M. Lira-Cantu, F. C. Krebs, « Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO₂, Nb₂O₅, ZnO, CeO₂ and CeO₂-TiO₂): Performance improvement during long-time irradiation» *Solar Energy Material Solar Cells*, 90, 2006, pp. 2076-2086.
- [10] M. Flytzani-Stephanopoulos, M. Sakbodin, Z. Wang, « Regenerative Adsorption and Removal of H₂S from Hot Fuel Gas Streams by Rare Earth Oxides», *Science* 312, 2006, pp. 1508-1510.
- [11] A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, N. El-Masry, «Violet/blue emission from epitaxial cerium oxide films on silicon substrates», *Applied Physical Letter*, 70, 1997, pp. 1647.

- [12]. N. Ozer, « Optical properties and electrochromic characterization of sol-gel deposited ceria films», *Solar Energy Material Solar Cells*, 68, 2001, pp. 391-400.
- [13] J.Q. Geng, Z.Y. Jiang, Y.B. Wang, D. Yang, «Carbon- modified TiO₂ nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method», *Scripta Materialia*, 59, 2008, pp. 352–355.
- [14] I. Mora-Sero, J. Bisquert, T. Dittrich, A. Belaidi, A.S. Susha, A.L. Rogach, «Photosensitization of TiO₂ layers with CdSe quantum dots: correlation between light absorption and photoinjection», *Journal Physical Chemistry C*, 111, 2007, pp. 14889– 14892.
- [15] Z. Bian, J. Zhu, S. Wang, Y. Cao, X.Qian, H. Li, «Self assembly of active Bi₂O₃/TiO₂ visible photocatalyst with ordered mesoporous structure and highly crystallized anatase», *Journal Physical Chemistry C*, 112, 2008, pp.6258–6262.
- [16] C. Hu, Z. Zhang, H. Liu, P. Gao, Z.LinWang, «Direct synthesis and structure characterization of ultrafine CeO₂ nanoparticles. *Nanotechnology*, 17, 2006, pp.5983–5987
- [17] G.K. Pradhan, K.M. Parida, « Fabrication of iron-cerium mixed oxide: an efficient photocatalyst for dye degradation», Internatinal *Journal Engineering science Technology*, 2, 2010, pp.53-65.
- [18] W. Wu, S. Li, S. Liao, F. Xiang, X. Wu, « Preparation of new sunscreen materials $Ce_{1-x}Zn_xO_{2-x}$ via solid-state reaction at room temperature and study on their properties. *Rares Metals*, 29, 2010, pp.149.
- [19] Małecka, M.A., Ke, pin'ski, L., Mis'ta, W., « Structure evolution of nanocrystalline CeO₂ and CeLnO_x mixed oxides (Ln = Pr, Tb, Lu) in O₂ and H₂ atmosphere and their catalytic activity in soot combustion», *Applied Catalysis B*,74, 2007, pp. 290–298.
- [20] T. Cai, Y. Liao, Z. Peng, Y. Long, Z. Wei, Q. Deng, « Photocatalytic performance of TiO₂ catalysts modified by H₃PW₁₂O₄₀, ZrO₂ and CeO₂ », *Journal Environmental Science*, 21, 2009, pp. 997–1004.
- [21] G. Ranga Rao,H. Ranjan Sahu, « XRD and UV-Vis diffuse reflectance analysis of CeO₂– ZrO₂ solid solutions synthesized by combustion method », Proc. *Indian Academic Science*, 113, 2001, pp. 651–658.
- [22] X. Wu, S. Liu, D. Weng, F. Lin, « Texturalstructural properties and soot oxidation activity of MnO_x-CeO₂ mixed oxides», *Catalysis Communication*, 12, 2011, pp. 345–348.
- [23] L. Lingzhi, Y. Bing, «CeO₂–Bi₂O₃ nanocomposite: Two step synthesis,

microstructure and photocatalytic activity», Journal of Non-Crystalline Solids, 355, 2009, pp. 776–779

- [24] I. Bhati, P. B. Punjabi, S. C. Ameta, «Photocatalytic degradation of fast green using nanosized CeCrO₃», *Macedonian Journal Chemistry and Chemical Engineering*, 29, 2010, pp.195–202.
- [25] H. R. Pouretedal, S. Basati, « Synthesis , charactzrization and photocatalitic activity of CeO₂/SBA-15 », Iranian Journal of Catalysis, 2, 2012, pp. 50-54.
- [26] R. M. Mohamed, E. S. Aazam, «Synthesis and Characterization of CeO₂-SiO₂ Nanoparticles byMicrowave-Assisted IrradiationMethod for Photocatalytic Oxidation of Methylene Blue Dye», *International Journal of Photoenergy*, 2012, pp. 1-9.
- [27] S. Song, L. Xu, Z. He, H. Ying, J. Chen, X. Xiao, B. Yan, « Photocatalytic degradation of C.I. Direct Red 23 in aqueous solutions under UV irradiation using SrTiO₃/CeO₂ composite as the catalyst », *Journal of Hazardous Materials*, 152, 2008, pp.1301–1308.
- [28] H. Wang, L. Yang, H. Yu, F. Peng, « A Highly Efficient and Stable Visible-Light Plasmonic Photocatalyst Ag-AgCl/CeO₂», *World Journal Nano Science Engineering*, 1, 2011, pp. 129-136.
- [29] N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, Κ. Pingmuang, S Phanichphant, A.I. Minett, J. Chen, « BiVO₄/CeO₂ Nanocomposites with High Visible-Light-Induced Photocatalytic Activity», Applied Material Interfaces, 4, 2012, pp. 3718-3723.
- [30] R. Rangel, G.J. López Mercado, P. Bartolo-Pérez, R. García, « Nanostructured-[CeO₂, La₂O₃, C]/TiO₂ Catalysts for Lignin Photodegradation », *Science of Advance Materials*, 4, 2012, pp. 573–578.
- [31] N. Sabari Arul, D. Mangalaraj, P. C. Chen, N. Ponpandian, P. Meena, Y. Masuda, «Enhanced photocatalytic activity of cobaltdoped CeO₂ nanorods », *Journal Sol-Gel Science Technology*, 64,2012, pp. 515–523.
- [32] A. Zhang, « Hydrothermal processing for obtaining of BiVO₄ nanoparticles », *Journal of Material Letter*, 63, 2009, pp.1939–1942.
- [33] J. S. Valente, F. Tzomoantzi, J. Prince, « Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO₂/MgAl layered double hydroxides », *Journal of Applied Catalysis B*, 102, 2011, pp. 276–285.
- [34] L. Li, B. J. Yan, « CeO₂-Bi₂O₃ nanocomposite: Two step synthesis, microstructure and photocatalytic activity»,

Journal Non-Crystalline Solids, 355, 2009, pp 776–779.

- [35] N. Couselo, F.S.Garcia Einschlag, R.J. Candal, M. Jobbagy, «Tungsten-doped TiO₂ vs pure TiO₂ photocatalysts: effects on photobleaching kinetics and mechanism», *Journal Physical Chemistry C*, 112, 2008, pp.1094–1100.
- [36] A. Sasahara, C.L. Pang, H. Onishi, « Local work function of Pt clusters vacuum-deposited on a TiO₂ surface », *Journal Physical Chemistry B*, 110, 2006, pp. 17584–17588.
- [37] A.Takeo, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, « High-throughput screening using porous photoelectrode for the development of visible-lightresponsive semiconductors », *Journal Comb. Chemistry*, 9, 2007, pp. 574–581.
- [38] R. C. Pullar, M.D.Taylor, A.K. Bhattacharya, Journal of the European Ceramic Society, 18, 1988, pp.1759-1764.
- [39] K. Vasanth Kumar, K. Porkodi, F. Rocha, « Langmuir–Hinshelwood kinetics – a theoretical study, Catal. Commun. 9, 2008, pp. 82–84.
- [40] J. Keren, « Fabrication and Catalytic Property of Cerium Oxide Nanomaterials », *Thesis* University of Nebraska – Lincoln, 2011.
- [41] C. Hu, Z. Zhang, H. Liu, P. Gao, z. LinWang, Direct synthesis and structure characterization of ultrafine CeO₂ nanoparticles», *Nanotechnology*, 17, 2006, pp. 5983–5987
- [42] K.S. Lin S. «Chowdhury, « Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review», *International Journal of Molecular Science*, 11,2010, 3226-3251.
- [43] N. T. Hahn, V.C. Holmberg, B.A. Korgel, , C. B. Mullins, « Electrochemical Synthesis and Characterization of p-CuBi₂O₄ Thin Film Photocathodes», *Journal Phycal Chemistry C*, 116, 2012, pp. 6459–6466.
- [44] X. Lu, X. Li, F. Chen, C. Ni, Z. Chen «, Hydrothermal synthesis of prism-like mesocrystal CeO₂», *Journal Alloys Compound*, 476, 2012, pp. 958–962.
- [45] Y. Xu, M.A.A. Schoonen, «The absolute energy positions of conduction and bands of selected semiconducting minerals», *American Mineralogist*, 85, 2000, pp. 543-556.
- [46] G. Magesh, b. Viswanathan, r. Viswanathan, P.,TVaradarajan, K., « Photocatalytic behavior of CeO₂-TiO₂ system for degradation of methylene blue», *Indian Journal chemistry* 8A, 2009, pp.480-488
- [47] K. Marunsek, « Electrical conductivity of sintered LMS ceramics», *Material Technology*, 43,2009, pp. 79–84.

- [48] W. Liu. S. Chen, H. Zhang, X. Yu, « Preparation, characterisation of p-n heterojunction photocatalyst CuBi₂O₄/Bi₂WO₆ and its photocatalytic activities», *Journal Experimental Nano Science*, 6, 2011, pp. 102– 120
- [49] K. S. Lin, S. Chowdhury, « Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review», *Internaternational Journal of Molecular Science, 11*, 2010, pp. 3226-3251.
- [50] Y. I. Kim, S.J. Atherton, E.S. Brigham, T.E. Mallouk, «Sensitized layered metal oxide semiconductor particles for photochemical

composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition», *Catalysis Today*, 93/95,2004, pp. 895-901

[53] L. Mingce, C. Weimin, C. Jun, Z. Baoxue, C. Xinye, W. Yahui, « Efficient Photocatalytic Degradation of Phenol over Co₃O₄/BiVO₄ Composite under Visible Light Irradiation», *Journal Physic Chemistry B*, 110, 2006, pp.20211-20216. hydrogen evolution from nonsacrificial electron donors», *Journal Physical Chemistry*, *97*, 1993, pp. 11802-11810.

- [51] M.A. Butler, D. S. Ginley, « Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from Atomic Electronegativities», *Journal Electrochemical Society*, 125, 1998, pp. 228-232.
- [52] D. Li, H. Haneda, N. Ohashi, S. Hishita, Y. Yoshikawa, « Synthesis of nanosized nitrogencontaining MOx-ZnO (M = W, V, Fe)