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Abstract 

This paper describes the design, training and testing of an artificial neural network for 
classification of normal and abnormal premature ventricular contraction (PVC) beats in ECG 
signal. To carry out the classification task, we use the back-propagation (BP) learning algorithm. 
Two feature selections types were investigated with aim of generating the most appropriate input 
vector for the artificial neural network classifier (ANNC). The first selected information of each 
ECG beat is stored as 33-element vector; the second one is then reduced to a 10 dimensional 
vector using principal component analysis (P.C.A). The performance measures of the classifier 
will also be presented using as training and testing data sets from the MIT-BIH database. 

Keywords: Neural networks, ECG signal, PVC beats, Feature selection, MIT-BIH 
database. 

 
Résumé 

Cet article décrit la conception, l’entraînement et le test d’un  réseau de  neurones artificiels 
pour la classification des battements cardiaques normaux et anormaux (extrasystoles 
ventriculaires (ESV)) dans le signal  ECG. Pour effectuer  la tâche de classification, nous 
employons l'algorithme d'apprentissage de rétro-propagation. Deux types de sélection des 
caractéristiques ont été choisis dans le but de produire le vecteur d'entrée le plus approprié pour le 
classificateur (ANNC). La première information choisie de chaque battement d'ECG est présentée 
comme un  vecteur à  33 éléments, le second est réduit à un vecteur de 10 éléments en utilisant 
l'analyse en composantes principales (A.C.P). Les mesures de performance du classificateur 
seront également présentées en utilisant comme données d’entraînement et de test la base de 
données MIT-BIH. 

Mots clés: Réseaux de neurones, Signal ECG, Battements ESV, Sélection de 
caractéristiques, Base de données MIT-BIH. 

 
 
 
 

he Electrocardiogram (ECG) [1,2], as shown in figure 1, is the record 
of variation of bio-electric potential with respect to time as the human 

heart beats. Thus sufficient information is available in ECG signal to 
enable diagnosis of a number of cardiac abnormalities. The P wave is 
representative of atrial depolarization (cardiac stimulation), the QRS 
complex represents ventricular depolarization and the T wave represents 
the return of the ventricles to their resting state (repolarization).  
 

 

Figure 1: ECG cardiac cycle. 
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  ملخص 
طریقة تصمیم وتدریب شبكة  یصف ھذا البحث

العصبونات الاصطناعیة لتصنیف دقات القلب العادیة 
قبل اوانھ) - والغیر عادیة (ذات انقباض بطیني مخدوج

.  ولتنفید )ECG(من خلال الاشارة القلبیة الكھربائیة 
مھمة التصنیف, نستعمل نظام الانتشار الارتجاعي. 

على  بحثنا عن نوعین لمیزات مختارة قصد الحصول
شعاع لمدخل المصنف مبني على شبكة العصبونات 

یمثل المجموعة الأولى . (.A.N.N.C)الاصطناعیة 
33للمعلومات المختارة لكل دقة قلب شعاع ذات 

10عنصر والمجموعة الثانیة اختزلت في شعاع ذات 
.)(.A.C.Pعناصر باستعمال تحلیل المركبة الرئیسیة 

عدة المعطیات قیمت كفاءة المصنف باستعمال قا
  . (.M.I.T.-B.I.H)العالمیة

الاشارة  –شبكات عصبونیة  :الكلمات المفتاحیة
دقات ذات انقباض  - (.E.C.G)القلبیة الكھربائیة
قاعدة  - مختارة  اتمیز - ).P.V.C(بطیني مخدوج 

  ).(B.I.H M.I.T -المعطیات
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There is no visible waveform for atrial repolarisation as 
it is engulfed by ventricular depolarization. The goal of 
ECG classification is to classify the unknown recorded 
signal into one of a possible number of diagnostic classes, 
determining if the patients cardiac condition is ‘normal’ and 
may remain  untreated, or whether the patient exhibits any 
cardiac abnormalities and requires a form of treatment. 
Automated ECG beat classification was traditionally 
performed using a decision-tree-like approach, based on 
various features extracted from an ECG beat [3-5]. The 
features used include the width and height of QRS 
complex, RR interval, QRS complex area, etc. One of the 
difficulties is that these features are susceptible to 
variations of ECG beat morphology and temporal 
characteristics. As such, the classification rate reported in 
these earlier efforts are rather moderate. 

Recent advances in artificial neural networks have made 
them attractive for pattern recognition [6]. Neural networks 
have the potential for fast data-processing owing to their 
parallel architecture. When a neural network is used for 
pattern recognition, no assumption is needed about the 
underlying data probability distributions [7]. Once trained, 
it can be configured to perform  adaptively to improve its  
performance overtime [8]. There have been many 
successful applications in biomedical signal processing. 
The purpose of the present work is to derive better 
parameters for reducing the size of the ANNC classifier 
while maintaining good classification accuracy. A 
prerequisite to this goal is to find parameters that represent 
each condition with acceptable discrimination capability. 
Therefore the QRS template is reduced using principal-
component analysis. The instantaneous and average RR 
interval, the mean-square value, which can be thought of as 
the average signal power of the QRS complex segment, are 
used along with the reduced QRS template to provide 
another unique pattern feature of each ECG beat. Our study 
is subdivided into a number of processing steps: 

 Data Preparation; 
 Bandpass Filtering; 
  Feature Extraction/Selection; 
 Classification. 

 
1- DATA PREPARATION 

1.1- The data collection  

In this work, we concentrate on the classification of 
normal and abnormal PVC beats. ECG records of eleven 
patients were selected from the MIT-BIH arrhythmia 
database [9, 10] shown in table 1. The sampling frequency 
of the ECG signals in this database is fs = 360Hz. 

 
1.2- Bandpass  filtering 

In the  MIT-BIH arrhythmia database, the analog 
outputs of the playback unit are filtered to limit analog-to-
digital converter saturation and for anti-aliasing, using a 
bandpass analog filter with a passband from 0.1 to 100 Hz  
relative to real time. In this study, because of its simplicity 
and fidelity, an all integer coefficient digital bandpass filter, 
proposed by Lo and Tang [11], was used to remove noise 
caused   by   power   line   interference,  respiration, muscle  

Records number 
Number of   

Normal  Beats 
Number of  
PVC Beats 

# 106 1507 520 
# 116 2302 109 
# 119 1543 444 
# 203 2529 444 
# 208 1586 992 
# 213 2641 220 
# 215 3196 164 
# 219 2082 64 
# 221 2031 396 
# 228 1688 362 
# 233 2230 831 

Table 1: Evaluation data taken from the MIT-BIH arrhythmia 
database. 

tremors, and spikes. Other types of filters have been 
developed for this use, such as in [12] and [13]. The integer 
coefficient bandpass filter was formed by combining a 
lowpass filter with a highpass filter, both based on a 
sampling frequency of fs = 360Hz. The transfer function of 
the lowpass filter is given as: 

L(z) =  (1-2z-6+z-12 )/ (1-2z-1+z-2) 

The 3 dB point is at 20 Hz, and the first side-lobe zero 
amplitude is at 60 Hz. Therefore, power line interference at 
60 Hz is completely eliminated, and high frequency muscle 
tremor noise is minimized, which is predominately a result 
of the bandlimited (anti-aliased filtered) data in the MIT-
BIH arrhythmia database. Once the lowpass filter has 
removed the high frequency noise, one point from every 
two points in the output of the lowpass filter is presented as 
an input to the highpass filter. Thus, the data rate after the 
lowpass filter is half of the value before it. The transfer 
function of the highpass filter is given as 

H(z)=z-127–1/214(1-2z-128+z-256)/(1-2z-1+z-2) 

where 2-14 is the normalization factor. The cutoff frequency 
of this filter is at 1 Hz, where the gain is unity. Thus, it 
successfully removes the drift caused by respiration at 
about 0.2 Hz. 

 
1.3- Extraction of the QRS complex 

In this study, we concentrate on the classification of 
normal and abnormal PVC beats. The eleven records 
selected from MIT-BIH ECG arrhythmia database are used 
for the development and evaluation of the classifier. The 
availability of annotated MIT-BIH database has enabled the 
evaluation of performance of the ANNC classifier. The 
QRS complexes were extracted from the bandpass filtered 
data based on the MIT-BIH arrhythmia database 
annotations. The QRS segments are obtained as 30 point 
templates. The position of annotation labels is used to 
identify the peak of the QRS waveform, and with 15 points 
on one side and the remaining  on the other side with 
respect  of the R peak were picked up to form the template. 

 
1.4- Diagnostic feature selection 

The aim of this work was to determine suitable input 
feature vectors which would discriminate between the 
normal and abnormal PVC beats. The principle effects of 
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this technique results in the generation of a smaller 
descriptive feature vector and hence subsequently reducing 
the architecture of the network itself and increasing its 
generalisation ability [14], [15]. In this study, two sets of 
features were tested:  

(1) The information of each beat is stored as 33-element 
vector, with the first 30 elements representing the QRS 
segment, the next two elements representing the temporal 
parameters such as the instantaneous and average RR 
interval. The instantaneous RR interval is calculated as the 
difference between the QRS peak of the present beat and 
the previous beat. The average RR interval is calculated as 
the average RR interval over the previous ten beats. The 
last element is the mean square value of each QRS segment,  
i.e : 

X2 = E[x2] (where E is the expectation operator and x 
≡sample values in each segment). Thus, this set of 33 
feature parameters for each ECG beat is utilized as input to 
the ANNC classifier. 

(2) The information of each beat is represented by a 10-
element vector, knowing that the 30-dimensional QRS 
template is reduced to a seven-dimensional vector using 
P.C.A. It is designed such that the data set may be 
represented by a reduced number of “effective” features 
and yet retains most of the intrinsic information content of 
the data, we may reduce the number of features needed for 
effective data representation by discarding those linear 
combinations that have small variances and retain only 
those terms that have large variances. The data vector x is 
then approximated with the m largest eigenvalues of the 
correlation matrix R, introducing an approximating error. 
Thus this 10-element vector was used as input to the ANNC 
classifier (second case). 

 
2- ANNC CLASSIFIER ARCHITECTURE 

2.1- Training and testing methods 

Our experiments were performed using the neural 
network tool box in Matlab 5.3. During our experiment the 
limitations encountered with the use of the back-
propagation algorithm are related to the lack of criteria for 
determining the optimum network structure, learning 
coefficient and momentum. These parameters depend on 
the nature, distribution and complexity of the input data. In 
the present study, they were determined by a trial-and-error 
approach. The number of neurons in the input layer was 
fixed by the number of elements in the input feature vector. 
Therefore the input layer had 33 neurons for the ANNC 
classifier (first structure) using the complete morphology of 
the QRS template and 10 neurons for the second structure 
using the reduced QRS template by applying P.C.A. The 
output layer was determined by the number of classes 
desired. In our study, the two neurons of the output layer 
correspond to the normal beats and PVC beats. In practice, 
the number of neurons in the hidden layer varies according 
to the specific recognition task and is determined by the 
complexity and amount of training data available. If too 
many neurons are used in the hidden layer, the network will 
tend to memorise the data instead of discovering the 
features. This will result in failing to classify new input 
data. Using a trial-and-error method, we tested hidden 

layers varying between two and 20 neurons. The optimum 
number of neurons in the hidden layer was found to be 
respectively six and three for the first and second structure 
of the ANNC classifier. Consequently, we used one 
network structure of thirty-three-six-two (i.e thirty-three 
neurons at the input layer, six at the hidden layer and two at 
the output layer), and an other structure of ten-two-two with 
the reduced QRS segment. 

With large values of the learning coefficient and 
momentum, a network may go through large oscillations 
during training and may never converge. Smaller learning 
coefficient and momentum tend to create a more stable 
network but require a long training time. For a good 
compromise between training speed and network stability, 
the learning coefficient and momentum were selected in 
such a way that their values decreased with the increase of 
the training epoch. To generate an efficient network, 
different learning coefficients and momenta were selected 
for different layers. In the present work, the normlised root-
mean-square (RMS) error of the output layer was used as a 
criterion to select these parameters. The selected learning 
coefficients and momenta correspond to the deepest slope 
of the normalised RMS error. Figure 2 shows the change in 
the RMS error during a training process. 

 

 

Figure 2: RMS error of the first classifier during the training 
process. 

Using the hyperbolic tangent sigmoid as the neural 
transfer function, the input feature vectors were scaled to 
the range from –1 to +1 to fit into the dynamic range of this 
function. Before the training process was started, all the 
weights were initialised to small random numbers. This 
ensured that the classifier network was not saturated by 
large values of the weights. The threshold of convergence 
was set at 10-8 of the normilised RMS error. Training was 
stopped when the convergence threshold was reached or 
when the 2000th epoch was encountered. In this experiment, 
we use the record (106) as the training data to develop the 
ANNC classifier and then tested from the remaining 
records. 

 
2.2- Performance measure indices 

The performance of the ANNC classifier for the 
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structures was evaluated by computing the percentages of 
sensitivity (SE), specificity (SP) and correct classification 
(CC), the respective definitions are as follows: 
- Sensitivity:[ SE = 100xTP/(TP+FN)] is the fraction of real 
events that are correctly detected among all real events, 
- Specificity: [SP = 100xTN/(TN+FP)] is the fraction of 
nonevents that has been correctly rejected, 
- Correct classification: 
[CC=100x(TP+TN)/(TN+TP+FN+FP)] is the classification 
rate, 

where TP was the number of true positives, TN was the 
number of true negatives, FN was the number of false 
negatives, and FP was the number of false positives. Since 
we are interested in estimating the performance of 
classifiers based on the recognition of PVC beats, the true 
positives (TP), false positives (FP), true negatives (TN), 
and false negatives (FN) are defined appropriately as shown 
below: 

FP: classifies normal as PVC. 
TP: classifies PVC as PVC. 
FN: classifies PVC as normal.  
TN: classifies normal as normal. 
 

3- EXPERIMENTAL RESULTS 

The results of the evaluation of the ANNC classifier for 
the two structures in terms of correct classification  
sensitivity and specificity are summarized in table 2 (actual 
number of beats) and table 3 (percentage). 

These results show a good performance for normal and 
abnormal PVC beats classification using neural networks. 
The average results obtained by the two input vectors of the 
classifier were: 85,17 correct classification, 78,05 
specificity and  98,61 sensitivity for the first case, in the 
other hand 76,40 correct classification, 75,65 specificity 
and  93,48 sensitivity for the second one. 

The ANNC classifier performance results compare 
exceptionally well with other methods for PVC detection. 
For example Lin and Chang [16] reported that using linear 
prediction techniques resulted in 92 % sensitivity for PVC 
detection as compared to the ANNC classifier results 
shown above for the two feature selection types. 

In our experiment, a threshold equal to 10-8 of the 
normalized RMS error of the output layer was used to stop 
training. This is a reasonable choice, because a larger 
threshold correspond to an unfulfilled network classifier, 
whereas a smaller threshold led to long training time and 
obtain a steady low RMS value, variable learning 
parameters (learning coefficient and momentum) were 
adopted in our experiments. This means starting with high 
values of the learning parameters and lowering them as 
training progresses. As mentioned previously, at present 
there is no algorithm to determine the best architecture for 
the neural network, learning coefficient and momentum for 
a given problem. Examining all possible combinations 
would be a very time-consuming and heavily computational 
task. Additionally, our present research on the ECG beats 
classification needs to select the optimum number of 
combination of the diagnostic  features among  a given set 
of feature candidates. 

 1st  Structure 2nd  Structure 

Records TP FP FN TN TP FP FN TN 

106 992 1570 0 15 903 39 0 1182 

116 109 1 0 2299 101 0 1 1007 

119 443 0 1 1541 439 719 5 756 

203 444 1109 0 1418 433 862 2 1581 

213 213 7 7 2632 67 1 9 119 

215 162 481 2 2713 140 1736 6 1454 

219 59 2 5 2078 17 1073 1 3 

221 396 831 0 1198 274 7 3 1703 

228 359 1 3 1685 312 0 8 1687 

233 825 0 5 2229 171 0 101 756 

Table 2: Beat–by-beat record-by-record testing result of the 
experiment. 

 

 
Correct 

Classification 
Sensitivity Specificity 

Records 
1st 

Structure 
2nd  

Structure 
1st 

Structure 
2nd  

Structure 
1st 

Structure 
2nd  

Structure 

106 39.07 98.16 100 100 0.94 96.80 

116 99.95 99.90 100 99.01 99.95 100 

119 99.94 62.27 99.77 98.87 100 51.25 

203 62.67 69.97 100 99.54 56.11 64.71 

213 99.51 94.89 96.81 88.16 99.73 99.16 

215 85.61 47.78 98.78 95.89 84.94 45.57 

219 99.67 1.82 92.18 94.44 99.90 0.27 

221 65.73 99.49 100 98.59 59.04 99.59 

228 99.80 99.60 99.17 97.50 99.94 100 

233 99.83 90.17 99.39 62.36 100 100 

Table 3: Comparison of performance between the Two Structures 
of ANNC classifier.  All entries are in percent ( %).  

 
CONCLUSION 

 
In this paper, we developed an artificial neural network 

classifier (ANNC) to identify normal and abnormal 
premature ventricular contraction (PVC) beats in ECG. 
This study demonstrates the capability of automatic 
classification to distinguish between normal and abnormal 
PVC beats in ECG signals by neural networks, and how it 
was possible to reduce the input vector dimensions of the 
ANNC classifier using principle-component-analysis 
without a great loss of classification accuracy. 

 More investigations will be undertaken on how to 
perform features extraction from ECG beats by using other 
techniques such as linear prediction, linear segregation 
based on box plots, forward stepwise multiple linear 
regressions, wavelets, etc. 

However, further investigation is required to a larger 
class of cardiac arrhythmias and automating the process for 
microcomputer system implementation. 
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