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Résumé   

Dans ce présent travail, l'analyse d'un écoulement en convection naturelle de type  couche limite est présentée pour une plaque 

inclinée semi infinie immergée dans un milieu poreux saturé d'un nanofluide, sous des conditions aux limites classique.  

Le modèle utilisé pour le nanofluide comporte l'effet de diffusion brownienne et la thermophorèse, tandis que le modèle Darcy est 

utilisé pour décrire le comportement du milieu poreux.  

La formulation du problème est obtenue par des transformations de similarité appropriées. Les équations de similarité sont résolues 

numériquement en utilisant la méthode des différences finies via bvp4c.  

Une étude paramétrique des paramètres physiques est menée pour afficher leur influence sur les différents profils vitesse, température 

et fraction volumique des nanoparticules. Les autres quantités d'intérêt sont calculées. 

 
Mots clés : convection naturelle, milieu poreux, nanofluide, mouvement Brownien, thermophorèse  
 

 

Abstract  

In this paper, we examine the steady natural convection boundary layer flow of an incompressible viscous nanofluid along an 

inclined plate at an angle α in a porous medium.  

The model used for the nanofluid includes the effects of Brownian motion and thermophoresis, while the Darcy model is used for 

describe the porous medium. The resulting similarity equations are solved numerically using finite difference method via bvp4c routine. 

Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different 

profiles.  

The conclusion is drawn that the flow field, temperature and nanoparticle volume fraction shapes are significantly influenced by 

nanofluid Lewis number, Brownian motion parameter and thermophoresis parameter. 

 
Keywords: natural convection, porous medium, nanofluid, Brownian motion, thermophoresis 
 
 

  ملخص

في هذه المقالة، الانتقال الحراري عن طريق الحمل الطبيعي في الأوساط المسامية المشبعة بمائع قد درست بواسطة المعالجة 

 الهندسي لهذه الدراسة هي عبارة عن لوحة مائلة مغموسة في وسط مسامي مشبع بسائل نانوني. الرقمية. الشكل 

نموذج درسي قد استعمل لنمذجت الوسط المسامي. فما استعملت تأثير الحركة البرونية والترموفرز لنمذجت المائع النانوني. 

 لمناسبة. الإشكالية المطروحة تمت صياغتها عن طريق التحويلات المتشابهة ا

، النتائج المحصل عليها قادتنا إلى الأخذ بعين الاعتبار التأثير  BVPهذه الاخيرة حلت بواسطة الطرق الرقمية، بمساعدة طريقة  

 الحركة البرونية والترموفرز على التدفق الحملي لاسيما في سرعة التدفق، توزيع درجة الحرارة و نسبة الحجم للجسيمات النانونية.

 

 ترموفرز سائل نانوني، حركة برونية، حمل طبيعي، وسط مسامي، :ت المفتاحيةالكلما
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tudy of natural convective heat in porous media has 

been the interest of several researches owing to its wide 

applicability in engineering and geophysical problems such 

as in oil recovery technology, in the use of fibrous materials 

for thermal insulations, in the design of aquifers as an 

energy storage system, and also in resin transfer molding 

process, in which fibre-reinforced polymeric parts are 

produced in final shape. Excellent reviews of the natural 

convection flows in porous media have been presented by 

many authors. [1-4]. 

Nanofluid refer to a liquid containing a dispersion of 

nanoparticles. The nanoparticles are different from 

conventional particles in that they keep suspended in the 

base fluid without sedimentation [5]. A nanofluid is a new 

class of heat transfer fluids that contain a base fluid and 

nanoparticles. The use of additives is a technique applied to 

enhance the heat transfer performance of base fluids. The 

thermal conductivity of the ordinary heat transfer fluids is 

not adequate to meet today’s cooling rate requirements. 

Nanofluids have been shown to increase the thermal 

conductivity and convective heat transfer performance of 

the base liquids [6]. Beside, nanofluids find numerous 

applications in various fields of science and engineering as 

convective heat transfer fluids, ferromagnetic fluids, 

superwetting fluids and detergents, biomedical fluids, 

polymer nanocomposites, gain media in random lasers, and 

as building blocks for electronic and optoelectronic devices 

[7]. The investigations of boundary layer flow, heat and 

mass transfer over a flat plate embedded in porous media 

containing nanofluids are important due to its applications 

in industries and many manufacturing processes, in this 

field of study, Nield and Kuznetsov have presented 

similarity solutions for the Cheng–Minkowycz problem for 

the double-diffusive natural convective boundary layer flow 

in a porous medium, they have used the model for the 

nanofluid incorporates the effects of Brownian motion and 

thermophoresis [8], the same authors studied thermal 

instability in a porous medium layer saturated by a 

nanofluid, they found that for a typical nanofluid (for which 

the Lewis number is large) the primary contribution of the 

nanoparticles is via a buoyancy effect coupled with the 

conservation of nanoparticles, with the contribution of 

nanoparticles to the thermal energy equation being a 

second-order effect [9]. Natural convective flow of a 

nanofluid over a vertical plate with a constant surface heat 

flux is investigated by Khan and Aziz, they used the 

transport model which includes the effect of Brownian 

motion and thermophoresis, they have concluded that 

velocity, temperature and nanoparticle volume fraction 

profiles in the respective boundary layers depend on five 

dimensionless parameters [10]. Mixed convection boundary 

layer flow from a vertical flat plate embedded in a porous 

medium filled with nanofluids is investigated by Syakila 

and Pop using different types of nanoparticles as Cu 

(cuprom), Al2O3 (aluminium) and TiO2 (titanium) [11]. 

The principal aim of the present paper is to study the 

combined effect of Brownian motion and thermophoresis of 

nanofluid on steady free convection heat over inclined flat 

plate embedded in a Darcy porous medium Based on the 

literature survey only the papers by Nield and Kuznetsov 

[12]. The resulting similarity solutions of the governing 

equations are obtained. Many results are obtained and 

representative set is displayed graphically to illustrate the 

influence of the various dimensionless parameters. It is in 

the main objective to determine the influence of the 

simultaneous effects on heat and mass transfer from the 

plate to the porous medium. 

 

1. PROBLEME STATEMODELE MATHEMATIQUE 
 

We consider the Darcy natural convection of two 

dimensional flow, heat transfer of an incompressible 

viscous nanofluid past an inclined plate embedded in Darcy 

porous medium as illustrated in figure 1. The x-axis is taken 

and measured along the plate and y-axis is normal to it. The 

temperature T and the nanoparticle fraction  at the plate 

surface takes Tw and w, respectively. The ambient values, 

attained as y tends to infinity, of T,  are denoted by T∞ and 

∞, respectively. The oberbeck–boussinesq approximation 

for the nanofluid [13] is employed. homogeneity and local 

thermal equilibrium in the porous medium is assumed. 

Under the above of these assumptions, the boundary layer 

equations governing the flow, temperature and 

concentration field can be written in dimensional form as 

 

 

Figure 1 :  Physical model and coordinate system. 
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Here p is the pressure, T is the temperature and   

nanoparticle volume fraction. K is the permeability constant 

of the porous medium, f,   and βT are the density, 

viscosity, and volumetric thermal expansion coefficient of 

the fluid, while P is the density of the particles and αm 

represent thermal diffusivity of the porous medium. The 

gravitational acceleration is denoted by g. The coefficients 

that appear in Eqs. (4) and (5) are the Brownian diffusion 

coefficient DB and the thermophoretic diffusion coefficient 

DT.  is a parameter defined as    fp cc  . The 

flow is assumed to be slow so that an advective term and a 

Forchheimer quadratic drag term do not appear in the 

momentum equation.   

The corresponding wall and for stream boundary 

conditions are defined as follow 

 

ww ,TT0,v:0yAt    
                   

(6) 

 

  ,TT0,u:y   As
          

 (7) 

 

We now introduce the local Rayleigh number Rax 

defined by 
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And the similarity variable 
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We also introduce the dimensionless variables f,  and h 

defined by 
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Where   is the classical stream function, and from the 

definition of the stream function, the velocity components 

become  
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Equations “1, 2, 3, 4 and 5” with the above appropriate 

transformations and algebraic combining for “Equations 1 

and 2” and  “Equation 3” can be further reduced to a set of 

ordinary differential equations for which numerical 

solutions are more easily determined 
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The boundary conditions become 
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Where the various parameters are defined by 
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Here Nr, Nb, Nt, denote the nanofluid buoyancy ratio, 

the Brownian motion parameter, the thermophoresis 

parameter, respectively, while Lep is a nanofluid Lewis 

number. 

Quantities of practical interest in thermal engineering 

design applications are the local Nusselt number Nux and 

the local Sherwood number Shx, which take the form 
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Here, qw and q'w are the heat flux and mass flux at the 

surface (plate), respectively. Whereas k is the effective 

thermal conductivity and Dm is molecular solutal 
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diffusivity of the fluid. Using (10) we obtain dimensionless 

versions of these key design quantities: 

 

 0RaNu 2/1

xx 
,       0hRaSh 2/1

xx
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2. PROBLEME STATEMODELE MATHEMATIQUE 
 

The set of the coupled ordinary differential  “Equations 

11 – 13” is highly nonlinear and cannot be solved 

analytically. Together with the boundary conditions 

“Equation 14”, they form a two point boundary value 

problem (BVP) which can be solved using the routine 

bvp4c of the symbolic computer algebra software 

MATLAB, this routine is based on the finite differences 

method that implements the 3-stage Lobatto collocation 

formula and the collocation polynomial provides a 

continuous solution that is fourth-order accurate uniformly 

in the interval of integration. Mesh selection and error 

control are based on the residual of the continuous solution. 

The collocation technique uses a mesh of points to divide 

the interval of integration into subintervals. The flow region 

is controlled by thermophysical parameters, namely Nr, Nb, 

Nt and Lep. Numerical computations are carried out for 

different values of the parameters shown in all figures. 

Preliminary calculations are conducted to check the 

numerical results. It is interesting to show the influence of 

all the control parameters on the velocity, temperature and 

nanoparticale volume fraction profiles respectively.    

 

 
Figure 2 : Variation of velocity profiles with similarity variable ,  

(Nb =1.0, Nt =1.0, Lep =10.0, α =30°). 

 

Figure 3 : Variation of velocity profiles with similarity variable ,  

(Nr =0.5, Nt =1.0, Lep =10.0, α =30°). 

The figures 2, 3 represent the behaviours of the 

dimensionless velocity along the inclined plate with 

similarity variable  for different values of buoyancy ratio 

parameter Nr, Brownian motion parameter Nb, 

respectively. From figure 2 that the component of the 

velocity along of the plate increases initially, reaches a 

maximum and then decreases asymptotically to zero at the 

edge of the hydrodynamic boundary layer. This pattern is 

essentially the same as in the natural convective boundary 

layer of a regular fluid. Kuznetsov and Nield [14] noted the 

same pattern for the velocity profiles. The local 

dimensionless velocity is seen to decrease with an increase 

in the buoyancy-ratio parameter Nr. Results in the 

Brownian motion of nano-particale there is a sensible effect 

from parameter Nb to the velocity increases near the 

surface, as seen in figure 3.  

 

 
Figure 4 : Variation of temperature profiles with similarity 

variable , (Nr = 0.5, Nb =1.0, Lep =10.0, α=30°). 

 

 
Figure 5 : Variation of temperature profiles with similarity 

variable , (Nr = 0.5, Nb =1.0, Nt = 1.0, Lep =10.0). 
 

Figure 4 show the effect of thermophoresis parameter Nt 

on the some profiles. Here, again, it is seen that the 

thermophoretic of particles effect obviously affects the 

temperature distributions. However, the thermal boundary 

layer thickness increases, when the of thermophoresis 

parameter increases. Then the effects of thermophoresis 

parameter play an importance role on the surface heat 

transfer. The greatest difference in temperature profiles 

occurs some distance from the wall. In Figure 5, the 
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influence of the angle of inclination from the vertical, α, 

ranging from 0° to 45°, on the temperature  () profile are 

displayed. Similar to the effects of the thermophoresis 

parameter Nt, it is observed that increase in the inclination 

angle (α) increases the fluid temperature. This is due to the 

reduction in the thermal buoyancy effect 

            cosgTTg1 fpf  
caused 

by increases in α. 

 

 
Figure 6 : Variation of volume fraction profiles with 

similarity variable , (Nb =1.0, Nt =1.0, Lep =10.0, α = 

30°). 

 

 
Figure 7 : Variation of volume fraction profiles with similarity 

variable , (Nr = 0.5, Nb =1.0, Nt =1.0, Lep =10.0). 

 

Figures 6 and 7 illustrate the effect of the buoyancy 

ratio parameter Nr and the angle of inclination parameter α 

on the Nanoparticle volume fraction distributions through 

the boundary layer regime, With an increase in the angle of 

inclination parameter from 0° to 70° and the buoyancy ratio 

from 0.1 to 0.7, leads to increasing of the volume fraction 

of the nanoparticle in the fluid, and the boundary layer 

becomes larger of the nanoparticle. 

The variations of the dimensionless heat transfer rates 

Nux/Ra1
x

/2 and mass transfer rates Shx/Ra1
x
/2 with the 

thermophoretic Nt parameter and the Brownian motion 

parameter Nb are shown in Table I. The table indicates the 

effects of the Brownian motion parameter Nb on the 

dimensionless heat transfer rates for Lep = 10 (the thermal 

diffusivity is 10 times the mass diffusivity) and for Lep = 20 

(the thermal diffusivity is 20 times the mass diffusivity).  

 
Table 1 : Values of Nux /Ra1

x
/2  and Shx /Ra1

x
/2 for selected values 

of Lep, Nt and Nb. 

                               Nux /Ra1
x

/2             Shxx /Ra1
x
/2 

Lep Nt Nb=0.5 Nb=1.0 Nb=2.0 Nb=0.5 Nb=1.0 Nb=2.0 

 

10 

 
 

 

20 

0.1 

0.5 

1.0 
 

0.1 

0.5 
1.0 

0.2373 

0.2021 

0.1679 
 

0.2379 

0.2023 
0.1676 

0.1580 

0.1348 

0.1121 
 

0.1541 

0.1311 
0.1087 

0.0667 

0.0568 

0.0472 
 

0.0623 

0.0530 
0.0438 

1.2726 

1.2933 

1.3409 
 

1.8479 

1.8867 
1.9480 

1.3008 

1.3338 

1.3771 
 

1.8738 

1.9150 
1.9641 

1.3294 

1.3562 

1.3862 
 

1.9005 

1.9304 
1.9622 

 

It is clear that the dimensionless heat transfer rates 

decrease with increasing thermophoresis parameter Nt, and 

also decrease with increasing Brownian motion parameter 

Nb. However, the dimensionless mass transfer rates 

increase with an increase in both the thermophoresis 

parameter Nt and the Brownian motion parameter Nb. Also, 

an increase in dimensional mass transfer rates accompany 

an increase in Lewis number.  

 

CONCLUSION 

 

In this paper, we have studied the natural convection 

boundary layer flow, heat and mass transfer in a porous 

medium saturated by a nanofluid  past a semi infinite 

inclined plate, via a model in which Brownian motion and 

thermophoresis are accounted for.  

We have used the Darcy model for the momentum 

equation and we have assumed the simplest possible 

boundary conditions. the differential partial equations are 

transformed in to the ordinary differential equations using 

the local similarity solution which depends on four 

dimensionless parameters, namely, a nanofluid Lewis 

number Lep, a buoyancy ratio parameter Nr, a Brownian 

motion parameter Nb, a thermophoresis parameter Nt.  One 

can conclude with the following note.  

The buoyancy ratio Nr reduces the velocity and expands 

the volume fraction in nanofluid . Concerning, the 

thermophoresis parameter Nt, we note that the 

augmentation of this parameter enhances the temperature 

fields and thicken the thermal boundary layer. More than 

that, increasing the Brownian motion number Nb, 

thermophoresis number Nt, and the angle of inclination α 

reduces the local heat transfer rate (local Nusselt number) 

and improves the dimensionless mass transfer rates (local 

Sherwood number). 
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