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Résumé  

Cet article traite le problème de la navigation des  robots  mobiles dans des environnements 
d'intérieur inconnus. La plupart des travaux se basant sur les réseaux de neurones (NN) pour 
traiter ce problème utilise un seul réseau  qui reçoit et analyse toute l'information disponible, ce 
qui engendre en général plusieurs inconvénients : temps d’apprentissage relativement long, 
exemples d’apprentissage souvent contradictoires, minimums locaux, et une pauvre capacité 
de généralisation finale. Le travail présenté dans cet article évite ces problèmes par l'utilisation 
d’une architecture de contrôle modulaire (stratégie « diviser pour régner ») combinant  un 
module pour la classification d'environnements avec plusieurs comportements pour la 
navigation réactive. Les comportements sont appris par les réseaux de neurones modulaires 
(MNN). La coordination entre les divers comportements se fait à la fois d'une manière 
coopérative et concurrentielle.  

Pour vérifier la validité de notre approche, une interface graphique est mise au point. Elle 
nous a permis de tester l’architecture proposée dans plusieurs situations différentes, et qui se 
rapprochent de la réalité. Dans tous les cas les  résultats obtenus sont très encourageants, et 
illustrent l'efficacité de cette architecture. 
Mots clés : Robots mobiles intelligents, réseaux de neurones modulaires (MNN), 
apprentissage, navigation réactive, classification d'environnements.  

 
 
 
 

Abstract   

This paper addresses the navigation problem of a mobile robot in unknown indoor 
environments. Most neural network (NN) approaches to this problem focus on a 
monolithic system, i.e., a system with only one neural network that receives and 
analyses all available information, resulting in conflicting training patterns, long 
training times and poor generalization. The work presented in this article circumvents 
these problems by the use of modular architecture (“divide and conquer” strategy) 
combining behavior based environment classification and several behaviors based reactive 
navigation.  The behaviors are learned by modular neural networks (MNN), coordination 
between these various behaviors is done at the same time in a cooperative and competitive way.   

To check the validity of our approach, a graphic interface is developed. It enabled us to test 
the proposed architecture in several different situations which approach reality. In all the cases, 
the results obtained are very encouraging, and illustrate the effectiveness of this architecture. 
Keywords : Intelligent Mobile robots, Modular Neurons Networks, Learning, Reactive 
navigation, environment classification.  
 

  ملخص   

الحلول المقترحة في هذا المجال من طرف الباحثين و .لى إشكالية في مجال الآلي المتحرك في وسط داخلي متغيرنتطرق في هذه المقالة إ
زمن التدريب، أمثلة التدريب متناقضة و خاصية : المعتمدة على الشبكات العصبية تستعمل غالبا شبكة واحدة، مما يؤدي إلى عدة نقائص منها

  .التعميم فقيرة

إستراتجية فرق "حه يتجنب آل هذه المشاآل  باستعمال هندسة التحكم للآلي المتحرك متجزئة مكونة من عدة شبكات العصبية الحل الذي نقتر 
هذه الشبكات تمكن الآلي أولا من اآتشاف و تخصيص وسطه القريب ؛ ثم  من التحرك في اتجاه هدفه مع تجنب آل العراقيل الممكن  " تسود

لهندسة المقترحة على الكمبيوتر في عدة أمثلة متنوعة و متغيرة من الأوساط؛ النتائج المتحصل عليها في آل الحالات  جربت ا. إيجادها في طريقه
 .مشجعة وتؤآد على فعالية هذا الحل

  آلي متحرك  ذآي، شبكات العصبية، التدريب، تخصيص الوسط :الكلمات المفتاحية
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here has been an increasing interest in the 
development of intelligent mobile robots, i.e., 
robots that are able to learn to navigate and act 

in complex, possibly unknown, environments [1, 
16]. This interest grew with the realization that a 
mobile robot’s application environments are 
usually dynamic, leading to the search for new 
solutions for mobile robot navigation. 

There are several approaches to the navigation 
problem [7, 13], and they can be broadly divided 
into two groups: 

Traditional methods referred to as Model based 
approaches or global navigation, mainly used when 
the robot environment is completely known. 

Sensor based approaches or reactive navigation 
[6], generally used in unknown environment, and are 
completely based on sensory information to 
determine the robot’s path online. 

Significant results on the navigation problems of a 
robot have been obtained in the past decades. 
However, the problem of reactive navigation in 
uncertain dynamic environments has not been fully 
investigated. 

Until now, progresses have been made in applying 
intelligent control and machine learning methods to 
reactive navigation systems of mobile robots. As an 
important class of machine learning, artificial neural 
networks have attracted interests in the literature [3, 
4, 5, 10, 13, 14]. 

Indeed, in recent years, neural networks (NN), with 
their strong learning capability, have proven to be a 
suitable tool for complex nonlinear dynamic systems 
such as mobile robots. Neural networks are used to 
process data from many sensors for the real-time 
control of mobile robots and to provide the necessary 
learning and adaptive capabilities for responding to 
the environmental changes in real time.   

However, traditional methods use monolithic 
neural networks. Monolithic systems are composed of 
just one (NN) that receives all data, learning the 
solution mapping. Monolithic (NN) present some 
problems, due to the usually conflicting tasks that 
exist in mobile robot navigation.  

These can be handled by following a modular 
strategy, applying the divide and conquer principle 
and using functional task division. This approach 
leads to (NN) that are known as Modular Neural 
Networks (MNN) [2, 4]. A (MNN) consists of a 
multiplicity of (NN) organized in a way that improves 
both the systems overall performance, and the 

effectiveness of the training and architecture 
determination. 

Monolithic (NN) training is normally a tedious 
procedure, and it is usually difficult to justify the 
obtained parameters. One of the most serious 
criticisms of (NN) is the fact that one does not know 
what is happening inside it. In other words, an (NN) 
behaves like a black box. A considerable benefit that 
can emerge from (MNN) is an interpretable and 
relevant neural representation of the systems behavior 
[4]. 

This article presents a new MNN architecture for 
reactive navigation of mobile robots in unknown 
environments. Figure 1 shows its global scheme. This 
architecture is based on modularity, which can be 
viewed as a manifestation of the principle of divide 
and conquer, which allows us to solve complex 
problems (navigation), by diving them into smaller 
sub-problems (modules), easier to solve and 
combining their individual solutions to achieve the 
final solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 : Proposed structure 

 
The principal modules developed in this 

architecture are: 

• First, a Neural Network (NN) in charge of 
environment classification has been developed based 
on 11 prototypes of topological maps roughly 
describing various local navigation environments. 
This environment classification eliminates the 
requirement for prior detailed modeling of the 
environment since it needs to memorize only 
“rough” information on local environments 
encountered along the way that might be sufficient 
for navigation.  This module is carried out using a 
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Bayesian classifier based on GBF (Gaussian Basic 
Functions) neural networks [8, 17, 18].  

• Next, three elementary modules of reactive 
navigation directly associating a simple action to 
the perception without passing by an explicit model 
of the environment, are then trained to learn the 
rules of navigation deduced from the human 
expertise in each of the 11 prototype local 
environments:  a module to turn right, a module to 
turn left, and a module to advance straight. These 
modules are carried out using MLP (Multi Layers 
Perceptron) trained by the back propagation 
gradient algorithm [4, 8]. 

• The choice of the module which takes the control of 
the robot navigation is done in a competitive [2, 13, 
15] way using the environment classifier. Once 
selected, the local navigator works in co-operation 
with a module of attraction towards the goal to 
determine the shifting of speed and orientation of 
the robot. This simple and intuitive strategy is 
deduced from the human expertise.   

The proposed architecture is adaptive to dynamic 
environments, robust against sensor noise; it avoids 
local minimum traps as well as solves the problems of 
poor obstacle clearance or oscillation. It is also 
amenable to easy addition of new behaviors due to its 
modularity.  

In this study we assume the following conditions: 

• Robot moves from a starting point towards a target 
point in a structured unknown environment without 
any preliminary knowledge neither on the form nor 
on the position of the obstacles which it can meet at 
any time of its mission. 

• It is supposed that the robot has non-holonomic 
characteristic, it moves without slip on a plane 
ground. It is equipped with a dead-reckoning 
system for keeping track of its orientation and 
position. The dead-reckoning system determines 
the robot’s present position from a previous one 
with information regarding the path and velocity 
taken between the two positions. 

• The robot can move forward with varying speed 
)( V∇  and turn right or left with variable number 

of degrees )( θ∇ .  

• The robot has 16 ultrasonic sensors for observing 
the surrounding environment and measure the 
distances separating the robot from the walls of the 
obstacles and the environment. Ultrasonic sensors 
are evenly distributed around the robot, yielding a 
22.5 degree angle between any two adjacent 

sensors. However, for navigation task, the robot in 
general does not need “to see” what there is behind 
it; we thus considered only the nine sensors of 
front, and for safety reasons we add a sensor on 
both sides; we obtain thus a vector of perception 
containing eleven distances (figure 2).          

• Robot sails step by step. At each step, takes 
telemetric measures, recognizes its local 
environment, and moves towards its goal without 
entering in collision with the obstacles, under the 
control of the one of the four developed reactive 
modules of navigation.  

• All these sub-tasks are acquired by learning by 
(MNN). It is what we explain in what follows : 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 :   Robot sensors localization. The dashed sensors 
are not used 
 

This paper is organized as follows: the section 2 
describes the neural network based environment 
classification. Section 3 presents various developed 
reactive navigation behaviors, and then it explains the 
action selection scheme.  

The section 4 reports and discusses some 
experimental results. A conclusion and possible 
extensions concerning this work are given in section 
5. 

  
1.  ENVIRONMENT CLASSIFICATION MODULE 
 

This module is used to determine the necessary 
behaviors at the high level. It takes as inputs the 
telemetry measurements, identifies and classifies in 
real time the environment surrounding the robot as 
one of 11 prototype environments defined in figure 3, 
that any mobile robot could encounter during 
navigation. This environment list is of course non-
exhaustive but sufficient enough to validate the 
proposed architectures.  

22.5°22.5°22.5°
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This module has been designed with a hierarchical 
classifier for both an increase of speed and a higher 
recognition ratio; it splits the set of environments into 
different classes by an upper level network (figure 4). 

 The outputs of this level are the class 1 (corridor 
class), class 2 (crossing class), class 3 (corner class) 
and class 4 for environments not belonging to the 
previous ones as well as for future developments of the 
network. The current environment is then classified by 
the networks of the second level which holds three 
networks working in parallel for giving the posteriori 
probability of each class [4, 10, 11].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 : Eleven prototypes of local environments 

 

Much research show that GBF network is able of 
very powerful calculations; it has more recognition 
precision and faster learning rate than back 
propagation network, and it can improve the veracity 
of the classified information. 

Each network has been implemented with a 
Gaussian Basis Function (GBF) [9, 11, 17, 18] (figure 
5).  

Several designs related to the network 
architecture and training have been made to 
construct the GBF network; and generally there are 
three learning phases in the GBF network.  
• The number of units in the hidden layer (M)  
• Centers of the radial basis function (Ci)  
• Weighted links for the hidden layer to the output 

units (W).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 :  Hierarchical classifier 
 
 

The key for the GBF network is to choose the 
center Ci of the Gaussian basis function. In some 
practices, centers are random samples selected from 
the input space and they may have approximate linear 
correlation leading to poor performance of the 
network.  

The training of the hidden layer center can be done 
using clustering techniques (K-means, Kohonen. [8]). 
Here the orthogonal least squares algorithm (OLS) 
[11, 13] is adopted to resolve the key problem of GBF 
network construction. The network is trained by 
training samples based on OLS algorithm to get the 
parameters of the GBF network : M, Ci and W.  

The OLS algorithm is better than the random 
selection method and K-means method to train the 
GBF network considering the performances of the 
approximation time and ultimate effect of the 
network.  

When the training phase is achieved, the 
generalization takes place by means of the examples 
of the generalization database. This base is set up by : 

• Randomly choosing the environments. 

• Changing the dimensions of the environments. 

• Locating the robot at different places in the 
environments with different orientation. 

• Introducing noise in the measures. 

These examples are given to the network for 
checking its ability to work in real environments.   

The results were encouraging since in all cases, a 
recognition rate exceeding 94% was obtained.  
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Figure 5 :  Neural network structure 
 

The output of the environment classification 
network will determine the high level behavior in 
conjunction with the goal seeking module, and further, 
may even be used to construct a topological map of the 
global environment. This topological map will mem-
orize only the features of the environments essential 
for navigation and thus lends itself to real time control 
by not storing any surplus information referring to 
unnecessary details. 

 
2.  REALIZATION OF BEHAVIORS 
 

After an environment has been classified, the 
needed reactive behavior for that class of local 
environment has to be determined in order to control 
the robot navigation. 

 
2.1. Reactive navigation behaviors 

Three basic behaviors: Right turn, Left turn, and 
Straight-going, have been implemented using a 
modular multi layers neural network (figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 : Structure of Reactive navigation behaviors 
 

This network will look at the sensory situations 
and generate a suitable change of direction and 
speed of the robot.  

The modular neural net controller has several 
advantages: (1) being resistant to noise that exists 
in real sensors (2) smooth control performance, (3) 
being able to generalize their ability in new 
situations, and (4) elimination of blocking and 
oscillation that may arise when using only one 
neural network due to contradictory training 
examples [4]. 

Each controller is trained only under feasible 
environments listed in Table 1. The robot is placed in 
several different positions, with a random initial 
orientation in each predefined environment; the 
desired commands are then generated from a human 
supervisor.  

This way, the neural network may even capture a 
human personality of driving. 
Table 1 : Training environments for each behavior 

Behavior Training environments 
Straight going behavior 1,4, 5, 7, 10, 11 
Turn right behavior 2, 4, 5, 6, 7, 8, 10, 11 
Turn left behavior 2, 4, 5, 6, 7, 9, 10, 11 

2.2.  Special modules 

One of the advantages of the modular architecture is 
that it easily allows the insertion of new behaviors. We 
thus exploited this property to add two special modules: 
one to deal with the navigation of the robot in the U-
shaped environments; the other, to allow the robot to 
reach its target. 
2.2.1. Backing up behavior 

The U-shaped environment can be recognized as 
one of the eleven prototypes defined in section 3. This 
environment, in general poses problems of blocking 
and oscillations during navigation [11, 15] (figure 7a).  
 
 
 
 

 a 
 
 
 
Figure 7 : U shaped environment  
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(b) Escape from U-shaped local minimum by the baking 
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To circumvent these problems and to be able to 
consider a great diversity of environments, we 
preferred to carry out special reactive navigation 
behavior for this type of environment. The 
methodology of its development is the same one as 
that adopted for the other behaviors (section 2.1).  

When the dead end environment is recognized by 
the environment classifier, the robot slows down, 
changes gradually direction with a minimal speed 
until forming an angle of 180°, circumvents the 
obstacle and it then points towards the target (figure 7 
b). 
2.2.2. Goal seeking module 

The task of navigation of the mobile robots is in 
general divided into two important sub-tasks which are:  

• Obstacle detection and avoidance 

• Attraction towards the goal  

This division is easily justifiable. Indeed, to go 
towards a destination, the human being must firstly 
detect and avoid all the obstacles, and secondly move 
towards the target. It is as obvious as these two tasks can 
be contradictory, i.e. that one can carry out the robot in a 
direction different from the other; this justifies and 
reinforces the application of the modular concept to the 
problem, to avoid the blocking and oscillation situations 
that can occur when a problem has contradictory 
objectives.  

The module of attraction towards the goal determines 
constantly the speed and the change of direction which 
brings more closer the robot to its objective.  

 
Figure 8 :  Attractive force produced by the goal 

 

The entries of the module are the position 
( )gg YX ,  of the target to be reached; and the current 
position and orientation ( )iii YX θ,,  of the robot. Its 
operation is based on the concept of the potential 
fields [10, 13] (figure 8). 

The goal G produces an attractive force Fa that 
guides the robot to its destination. The actions 

)( V∇ and )( θ∇ generated by this force are 
modulated by the inverse of the distance RG between 
the center of the robot and the goal. D is the distance 
of influence of the goal. It is supposed that no obstacle 
exists in the circle of diameter D.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9 : Robot attraction towards the goal 
 

The robot always points in direction of the goal 
with a step of ± Π/8 with minimal speed, and when it 
is enough faraway from goal (RG > D), it advances 
with a maximum speed. As soon as the robot reaches 
the zone of influence of the goal, it starts to slow 
down until it completely stops in front of the objective 
(figure 9).  
2.3. Coordination of behaviors  

The choice of the reactive behavior which deals 
with the control of the robot (figure 10) is done in 
a competitive way, according to the environments 
classifier output and the goal   position. 

• If the environment surrounding the robot is 
recognized as being a U shape, then the backing 
up behavior controls the robot to escape the 
dead end.   

• Else, the action behavior is selected first 
according to the type of the local environment 
recognized (table.1), and then according to the 
target position compared to the robot (figure 
14).   

- If the target is in zone 1 (figure 11) of the vision 
field   of the robot, the straight going behavior is 
then selected to control the robot.   

- If the target is in zone 2 (figure 11) of the vision 
field   of the robot, the right turn behavior is then 
selected to control the robot.  
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- And finally if the target is in zone 3of the vision 
field of the robot, it is the turn left behavior 
which is selected to control the robot.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 10 :  The flowchart of coordination of modules 

 
Once that one of the three reactive behaviors is 

chosen, it must work in a cooperative way [6, 15] with 
the goal seeking module to control the robot.  

The linear and angular velocity to apply to the 
robot, are the result of the following linear 
combinations:   

21 VVV ∇+∇=∇ βα     (1) 

21 θβθαθ ∇+∇=∇                         (2) 

Where: 

11  , θ∇∇V : are the linear and the angular velocity 
given by the reactive behavior. 

2 , 2 θ∇∇V : are the linear and the angular velocity 
given by the goal seeking module. 

α : posteriori probability of the recognized 
environment [11, 19] (section 3). 

β : posteriori probability of the class no obstacle 
(class 7 see figure 3).  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 11. Goal position compared to the robot 
 

This simple rule of fusion makes it possible to give 
the priority to the seeking goal module, each time the 
zone (goal – robot) is free obstacles and thus to optimize 
the trajectory. 

 

 
Figure 12 : Follow corridor under the control of the 
straight-going behavior 
 

Once, a reactive behavior is selected, it continues to 
control the robot navigation as long as the environment 
did not change. 

 
 

 
 
 
 
 
 
                                                
 
 
Figure 13 : Navigation of the robot in a right turn and left 
turn under the control of the turn right (a) and the turn left 
(b) behaviors 
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3. RESULTS 
 

To evaluate the performances of the suggested 
architecture, we first tested each behavior separately in 
test environments different from those used in training 
phase. 

Figure 12 shows the robot navigation in a corridor 
under the control of the straight going reactive 
behavior.  We note that the robot follows the center of 
free space, and it reduces its speed each time that it 
meets an obstacle.   

This test enabled us to evaluate the adaptation 
capacity of the module to the abrupt changes in 
environment dimensions and to avoid certain obstacles 
with a suitable speed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14 : Co-operation between the reactive navigation 
behaviors and goal seeking behavior 
 
 

In the same way, the figure 13 shows that the robot 
turns on the right under control of the turn right 
behavior (a), and turns on the left under the control of 
the left turn behavior (b) successfully.  It follows always 
the centre of free space and reduces its speed during the 
direction changes (concepts introduced during the 
training). 

 
The environments of figure 14 allow us to test and 

to evaluate the capacity of the suggested architecture, 
to cooperate the various reactive navigation agents, 
with the goal seeking behavior. 

 
On the environment (a) of figure 14, at the 

crossing, the robot has several choices:  turn right, 
turn left or advance; it chooses the straight-going 
behavior since the target is in front; arrived at the dead 

end, the special backup behavior takes control and 
makes the mobile back up to escape the U-shaped 
dead end.  And then, the straight-going behavior takes 
again control and works in co-operation with goal 
seeking module so that the robot approaches more the 
target with a suitable speed. 

 
In the same way on the environment (b) of figure 

14, we note a perfect attraction towards the goal wile 
avoiding all obstacles.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 15 :   Robot navigation in unknown environments, 
under the developed architecture. 

 
Figure 15 shows some examples of robot 

navigation under the control of the whole architecture 
using all the developed reactive agents. 

  
These results are obtained in more complex 

environments composed of the various assemblies of 
situations increasingly distant from those of the 
training base. In all cases, one note that the robot carries 
out a route without difficulty, adapts very well to the 
dimensions changes, carries out the crossing of the doors 
successfully, avoids the obstacles, and always follows a 
smooth trajectory in the center of free space with a 
perfect attraction towards the goal.   

b 

a

(c) : Test environnement  N° 3 (b)

(a) : Test environnement N° 1 

(b) : Test environnement N° 2 



Modular neural networks architecture for navigating mobile robot in changing environments  

 79

CONCLUSION 

A new modular architecture has been developed 
in this paper which achieves safe and robust navigation 
to a given goal in an arbitrary environment in real time. 

Our contributions are as follows: 

• First, a Modular Neural Network (MNN) in charge of 
environment classification has been developed based 
on 11 prototypes of topological maps roughly 
describing various local navigation environments. 
This environment classification (MNN) not only 
enables the navigator to avoid local minimum points 
but also eliminates the requirement for prior detailed 
modeling of the environment since it needs to 
memorize only “rough” information on local 
environments encountered along the way that might 
be sufficient for navigation task.  

• Next, a set of reactive behaviors controller have been 
trained to learn human steering commands for each of 
the 11 prototype local environments. 

• Third, an objective direction module is used to select 
a particular reactive behavior in conjunction with the 
classification (MNN).  

• Finally, a modular control architecture integrating all 
these concepts was developed.  

The proposed architecture avoids local minimum 
traps as well as solves the problems of poor obstacle 
clearance or oscillation. It is robust against sensor noise 
due to the use of NN) and adaptive to dynamic 
environments. This architecture is also amenable to easy 
addition of new behaviors due to its modularity.  

The results obtained with this modular architecture 
show its effectiveness and robustness, for navigating a 
mobile robot around obstacles, without knowledge of the 
environment. 

Future work will include the following : 

• The study of online learning as a way to improve the 
system performance. If it is found that the robot has 
made a mistake, it could be possible to identify the 
module responsible and eventually re-train or re-
construct it. 

• The environment classification network may be used 
as a useful component of map building based on the 
robot’s navigation experience. And, after a map has 
been built, an optimization of the path based on the 
prior map may be further investigated.  

• Ultrasonic and vision sensors may be fused for more 
robust and accurate landmark representation.  

• Another line of future work is the research into 
potential improvements introduced by adding static 
environmental information, such as artificial 
landmarks 

• The ultimate goal will be global navigation based on a 
map data consisting of the chain of landmarks like we 
humans do in our daily maneuvers. 
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