## EFFET DUFOUR SUR LA BIFURCATION DE LA CONVECTION NATURELLE THERMOSOLUTALE DANS UN MILIEU POREUX.

# Abbes ATTIA<sup>1</sup>, Mahmoud Mamou<sup>2</sup>, Smail BENISSAAD<sup>1</sup>

1 Laboratoire d'Énergétique Appliquée et de Pollution, Département de Génie mécanique, Faculté des Sciences de la Technologie. Université Frères Mentouri – Constantine 1. Campus Chaab Ersas, 25000 Constantine, Algérie

2 Aerodynamics Laboratory, NRC Aerospace, National Research Council Canada Ottawa, Ontario, Canada, K1A OR6

Reçu le 12 Juillet 2015 – Accepté le 12 novembre 2015

#### Résumé

Les effets Dufour et Soret sur la convection naturelle thermosolutale dans une couche poreuse horizontale sont étudiés numériquement en utilisant la méthode des différences finies et analytiquement en utilisant l'approximation de l'écoulement parallèle. Des flux uniformes de chaleur et de masse sont appliqués sur les parois horizontales, tandis que les parois verticales sont imperméables et adiabatiques. La modélisation de ce problème est basée sur le modèle de Darcy et l'approximation de Boussinesq. Les paramètres régissant cette étude sont le nombre de Rayleigh thermique, le rapport des forces de volumes, le nombre de Lewis, le ratio d'aspect de la cavité et les nombres de Dufour et de Soret.

Mots Clés : convection à double diffusion, milieu poreux, Effet Dufour.

#### Abstract

The Dufour and Soret effects on thermosolutral natural convection in a horizontal porous layer are studied numerically using the finite difference method and analytically using the parallel flow approximation. Uniform flows of heat and mass are applied to the horizontal walls, while the vertical walls are impermeable and adiabatic. The modeling of this problem is based on the Darcy model and the Boussinesq approximation. The parameters governing this study are the number of thermal Rayleighs, the ratio of the forces of volumes, the number of Lewis, the aspect ratio of the cavity and the numbers of Dufour and Soret.

Keywords: Double diffusion convection, porous medium. Dufour Effect.

## ملخص

ويتم التحقيق دوفور وسوريه آثار على الحمل الحراري الطبيعي في طبقة مسامية thermosolutal الأفقية عديا باستخدام طريقة الفروق المحدودة والتحليلية باستخدام تقريب تدفق مواز. تطبق تدفق موحد من الحرارة والكتلة على الجدران الأفقية، في حين أن الجدران الرأسية هي منيعة وثابت الحرارة. ويستند نماذج من هذه المشكلة على نموذج من دارسي وتقريب Boussinesq. المعلمات لهذه الدراسة هي عدد الحراري رايلي، فإن نسبة من قوات حجم، وعدد من لويس، ونسبة الجانب من تجويف وعدد دوفور وسوريه.

الكلمات المفتاحية : المزدوج الحراري نشر والمتوسطة التي يسهل اختراقها. تأثير دوفور.

## Nomenclature

- A rapport d'aspect géométrique, L'/H'
- D diffusivité solutale,  $m^2.s^{-1}$
- Da nombre de Darcy,  $K/H^{2}$
- $D_p$  diffusivité solutale en milieu poreux,  $m^2.s^{-1}$
- $D_u$  coefficient de Dufour,  $D_{TS}\Delta S^*/\alpha_P \Delta T^*$
- $g_{\mu}$  accélération de la pesanteur,  $m.s^{-1}$
- H' hauteur de l'enceinte, m
- j' flux de masse constant (par unité de surface),  $kg.m^2.s^{-1}$
- K perméabilité du milieu poreux,  $m^2$
- $k_p$  conductivité thermique du milieu poreux saturé,  $W.m^{-1}.K^{-1}$
- L' longueur de l'enceinte, m
- *Le* nombre de Lewis,  $\alpha_p/D$

N rapport des forces de volumes,  $\beta_S \Delta S^* / \beta_T \Delta T^*$ 

- *Nu* nombre de Nusselt
- Num nombre de Nusselt moyen
- q' flux de chaleur constant (par unité de surface),  $W.m^{-2}$
- $R_T$  nombre de Rayleigh-Darcy thermique,  $g\beta_T KH'\Delta T^*/\alpha_p \vartheta$
- *S* concentration adimensionnelle,  $(S' - S'_0)/\Delta S^*$
- $S_r$  coefficient de Soret,  $D_{ST}\Delta T^*/D_P\Delta S^*$
- *Sh* nombre de Sherwood
- Shm nombre de Sherwood moyen
- $\Delta S^*$  concentration caractéristique,  $j'H'/D_p$ , kg.m<sup>-</sup>
- T température adimensionnelle,  $(T' - T_0')/\Delta T^*$
- t temps adimensionnel,  $t' \alpha_p / H'^2$
- $\Delta T^*$  température caractéristique,  $q'H'/k_p$ , K
- (*u*, *v*) vitesses adimensionnelles dans les directions (*x*, *y*),  $(u'H'/\alpha_p, v'H'/\alpha_p)$
- (x, y) coordonnées cartésiennes adimensionnelles, (x'/H', y'/H')
- Symboles grecs
- $\alpha$  diffusivité thermique du fluide,  $m^2 \cdot s^{-1}$
- $\alpha_p$  diffusivité thermique du milieu poreux saturé,  $k_p/(\rho C)_f$ ,  $m^2.s^{-1}$
- $\beta_S$  coefficient d'expansion solutal,  $m^3 kg^{-1}$
- $\beta_T$  coefficient d'expansion thermique,  $\vec{K}^{I}$
- $\varepsilon$  porosité adimensionnelle du milieu poreux,  $\varepsilon'/\sigma$
- $\vartheta$  viscosité cinématique du fluide,  $m^2 \cdot s^{-1}$
- $\rho$  densité du fluide,  $kg.m^{-3}$
- $(\rho C)_f$  capacité calorifique du fluide,  $W.K^{-1}$

- $(\rho C)_p$  capacité calorifique du milieu poreux,  $W.K^{-1}$
- σ rapport des capacités calorifiques  $(\rho C)_p / (\rho C)_f$
- $\Psi$  fonction de courant adimensionnelle,  $\Psi'/\alpha_p$ Indices et exposants
  - variable dimensionnelle
- t thermique
- s solutale
- *p* poreux
  - fluide

f

## 1. INTRODUCTION

Le phénomène du transfert de chaleur et de masse par convection naturelle est dû à la présence simultanée des gradients de température et de concentration. Ces gradients causent une distribution non uniforme de la densité du mélange qui provoque à son tour un mouvement convectif sous l'effet de la gravité. On peut trouver Le phénomène de la convection naturelle à double diffusion ou à la convection thermosolutale, dans la nature comme dans l'industrie, la migration de l'humidité dans l'isolation fibreuse, le transport des contaminants dans le sol saturé, le stockage souterrain des déchets nucléaires et les processus de séchage électrochimiques [1]. La diffusion de masse et la thermo-diffusion pourraient être rencontrées dans la convection thermosolutale et leurs effets pourraient être importants. Le flux de chaleur, provoquée par la diffusion de masse est liée à l'effet Dufour et le flux de masse induit par le transfert de chaleur est connu comme l'effet Soret [2]. L'effet thermo-diffusion (Soret) [3], a été utilisé pour la séparation isotopique et dans des mélanges entre gaz de poids moléculaire très léger (H2, He) et de poids moléculaire moyen (N2, air). Pour ces mélanges, il a été trouvé que l'effet de masse par diffusion (Dufour) est d'une ampleur considérable de telle sorte qu'il ne peut pas être ignoré.

Platten et Legros [4] ont affirmé que dans la plupart des mélanges liquides l'effet Dufour est inopérant, mais ce n'est pas le cas dans les gaz. Mojtabi et Charrier-Mojtabi [5] ont confirmé cela en notant que dans les liquides, le coefficient Dufour est d'un ordre de grandeur plus faible que l'effet Soret. Rosanne et al. [6] ont étudié expérimentalement la thermo-diffusion dans une solution de chlorure de sodium contenu dans l'argile compacte. Ils ont conclu que le transfert de matière est amélioré par la thermo-diffusion. Benano-Melly et al. [7] ont étudié numériquement et expérimentalement le problème de thermo-diffusion dans un mélange initialement homogène soumis à un gradient thermique horizontal. Leurs résultats numériques ont montré qu'en fonction de la valeur du nombre de Soret, plusieurs configurations d'écoulement de convection pourraient se développer en présence de forces de flottabilité thermiques et solutale opposantes.

L'effet Soret sur la convection dans une cavité poreuse horizontale soumis à des gradients transversaux de

température et de concentration a été examiné par Bennacer et al. [8]. Leurs résultats ont montré que, lorsque le gradient de concentration verticale se stabilise, les solutions à l'équilibre multiples sont possibles sur une gamme de rapport de flottabilité qui est fortement dépendante du paramètre Soret. Joly et al. [9] ont étudié analytiquement et numériquement l'apparition de la convection naturelle dans une couche poreuse verticale soumise à des flux de chaleur uniforme le long des parois verticales en utilisant le modèle de Darcy-Brinkman. On constate que les deux bifurcations sous-critiques et supercritiques sont possibles dans ce système. Bahloul et al. [10] ont examiné la convection à double diffusion avec l'effet Soret dans une couche poreuse horizontale peu profonde, la stabilité de la solution d'écoulement parallèle a été étudié, ensuite le seuil de bifurcation de Hopf a été déterminée.

Weaver et Viskanta [11] ont étudié l'effet de l'interdiffusion des espèces et des effets Soret et Dufour sur la convection naturelle due à la température horizontale et des gradients de concentration dans la cavité. Les résultats obtenus montrent que les effets Soret et Dufour ont moins d'influence sur la vitesse, les champs de température et de concentration, mais ils augmentent le flux de masse et de l'énergie seulement lorsque le facteur de diffusion thermique est positif. D'un autre côté, lorsque le flux de masse est considérable sur les parois, l'effet Soret a un effet important qui diminue et augmente les gradients de vitesse, de température et de concentration à la paroi chaude et à la paroi froide respectivement.

Dans ce travail, l'effet Dufour sur la convection bidiffusive, dans une couche poreuse, sont pris en compte simultanément, en présence de gradients thermique et solutal verticaux. L'apparition de la convection souscritique et supercritique est étudiée analytiquement et numériquement, en fonctions de ce effet.

## 2. FORMULATION MATHÉMATIQUE :

Dans les équations, les symboles figurent en italique (voir équation 1) ; elles sont centrées sur la ligne et désignées par un numéro entre parenthèses placé à droite :

On considère le cas d'une cavité rectangulaire de hauteur H' et de longueur L' contenant un milieu poreux saturé par un fluide binaire (Fig. 1). Les parois horizontales de la cavité sont soumises à des flux uniformes de chaleur q' et d'espèce j', tandis que les parois verticales sont considérées comme adiabatiques et imperméables. On suppose que le problème est bidimensionnel, la solution est un fluide newtonien et incompressible, la matrice poreuse est isotrope perméable et homogène, l'écoulement est supposé laminaire, il n'y a ni réaction chimique, ni source de chaleur, ni source d'espèce et le transfert de chaleur par rayonnement est négligeable. Toutes les propriétés thermophysiques du fluide sont constantes sauf le terme de la densité du fluide dans les forces de volume qui varie linéairement avec la température et la concentration. On adopte alors l'approximation de Boussinesq.

Les écoulements de la convection naturelle thermosolutale susceptibles de se développer dans ce milieu poreux sont régis par les équations de conservation de la masse, de quantité de mouvement, de conservation d'énergie et de transfert des espèces. En utilisant le modèle de Darcy, le système d'équations différentielles aux dérivées partielles décrivant le problème s'écrit sous la forme adimensionnelle suivante :

$$\nabla^2 \Psi = -R_T \left( \frac{\partial T}{\partial x} + N \frac{\partial S}{\partial x} \right) \tag{1}$$

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \nabla^2 T + D u \nabla^2 S$$
(2)

$$\varepsilon \frac{\partial S}{\partial t} + u \frac{\partial S}{\partial x} + v \frac{\partial S}{\partial y} = \frac{1}{Le} \nabla^2 S + Sr \nabla^2 T$$
(3)

Les conditions initiales et aux limites adimensionnelles correspondantes sont :

- Conditions initiales :  $\dot{A}t = 0 : \Psi = 0; T = S = 0$ (4.1)
- Conditions hydrodynamiques :

$$x = \pm \frac{4}{2}, \forall y: \Psi = 0; y = \pm \frac{1}{2}, \forall x: \Psi = 0$$
 (4.2)

• Conditions thermiques et massiques :

$$x = \pm \frac{A}{2}, \forall y : \frac{\partial T}{\partial x} = \frac{\partial S}{\partial x} = 0;$$
  

$$y = \pm \frac{1}{2}, \forall x : \frac{\partial T}{\partial y} + Du \frac{\partial S}{\partial y} = -1, \quad \frac{\partial S}{\partial y} + Sr \frac{\partial T}{\partial y} = -1$$
(4.3)

Les taux de transferts de chaleur et de masse sont exprimés par les nombres de Nusselt et de Sherwood, respectivement. À mi-longueur de la cavité (à x = 0), ils sont définis par :

$$Nu = \frac{1}{\Delta T + Du\Delta S} \tag{5.1}$$

$$Sh = \frac{1}{\Delta S + Sr\Delta T} \tag{5.2}$$

Où : 
$$\Delta T = T(0, -1/2) - T(0, 1/2)$$
 et  
 $\Delta S = S(0, -1/2) - S(0, 1/2)$ 

#### 3. SOLUTION NUMERIQUE

La solution numérique des équations gouvernantes est obtenue en utilisant la méthode des différences-finies avec un schéma du second ordre. La résolution numérique des équations (2) et (3) est effectuée à l'aide de la méthode ADI. L'équation de  $\Psi$  (éq. 1) est résolue par la méthode de sous relaxation SOR.

Pour valider notre code de calcul numérique (tableau 1), nous avons choisi d'effectuer une comparaison avec les résultats numériques de mamou [13] kalla[14] et Dina[15] dans le cas de la convection naturelle à double diffusion où les forces de volumes sont opposantes et avec les paramètres  $R_T = 100$ ; Le= 10; N = -0.8; A = 8.

La sensibilité de la solution au maillage a été testée avec des grilles de la taille allant de  $120 \times 60$  à  $240 \times 80$  (tableau 2). Les résultats ont indiqué que, des différences relatives de 0,1% pour la fonction de courant les taux de transfert de chaleur et de masse. Ainsi une grille de  $240 \times 80$  s'est révélé être suffisant pour simuler avec précision le flux de convection.

Tableau 1. Comparaison entre des résultats Numériques pour :  $R_T = 100 \cdot I_P = 10 \cdot N = -0.8 : A = 8.$ 

| KT = 100, $Le = 10$ , $N = -0.0$ , $A = 0$ . |       |       |       |          |  |  |  |  |
|----------------------------------------------|-------|-------|-------|----------|--|--|--|--|
|                                              | Mamou | Kalla | Dina  | Présente |  |  |  |  |
|                                              | [13]  | [14]  | [15]  | étude    |  |  |  |  |
| $\Psi_0$                                     | 3.689 | 3.675 | 3.688 | 3.684    |  |  |  |  |
| Nu                                           | 3.635 | 3.649 | 3.657 | 3.612    |  |  |  |  |
| Sh                                           | 6.737 | 6.742 | 6.751 | 6.105    |  |  |  |  |

Tableau 2 : Effet du maillage pour :  $R_T$ =100, Le=2, N=1, Du=0.1, Sr=-0.1 et A=10.

|          | 120×60  | 160×80  | 200×80  | 220×80  | 240×80  | Solution analytique |  |  |  |
|----------|---------|---------|---------|---------|---------|---------------------|--|--|--|
| $\Psi_0$ | 4.67878 | 4.67959 | 4.67869 | 4.67818 | 4.67771 | 4.67441             |  |  |  |
| Nu       | 4.22582 | 4.23422 | 4.22822 | 4.22489 | 4.22181 | 4.20870             |  |  |  |
| Sh       | 5.13682 | 5.16588 | 5.16857 | 5.16742 | 5.16563 | 5.15160             |  |  |  |

## 4. SOLUTION ANALYTIQUE :

Dans le cas d'une cavité horizontale ayant un grand rapport d'aspect (A >> 1), le problème peut être simplifié d'une manière significative par l'approximation de l'écoulement parallèle.. Ceci permet de négliger la composante de la vitesse perpendiculaire aux parois horizontales tels que : (x, y) = u(y) v(x, y) = 0

Dans ce cas, la fonction de courant  $\Psi$  dépend uniquement de l'ordonné y :

$$\Psi(x,y) = \Psi(y) \tag{6}$$

$$T(x,y) = C_T x + \theta_T(y) \tag{7}$$

$$S(x, y) = C_S x + \theta_S(y) \tag{8}$$

En substituant les équations (6), (7) et (8) dans (1), (2) et (3), on obtient le système d'équations différentielles adimensionnelles suivant :

$$\frac{d^2\Psi}{dy^2} = -R_T(C_T + NC_S) \tag{9}$$

$$\frac{d^2\theta_T}{dy^2} + Du \frac{d^2\theta_S}{dy^2} = C_T \frac{d\Psi}{dy}$$
(10)

$$\frac{d^2\theta_S}{dy^2} + Sr\frac{d^2\theta_T}{dy^2} = Le\ C_S\frac{d\Psi}{dy} \tag{11}$$

Après intégration (9) et en satisfaisant (4.2), on obtient le résultat suivant pour  $\Psi$  :

$$\Psi(y) = \Psi_0 (1 - 4y^2) \tag{12}$$

$$T(x,y) = C_T x + \frac{C_T - C_S DuLe}{3(1 - DuSr)} \Psi_0(3y - 4y^3) - a_T y \quad (13)$$

$$S(x,y) = C_S x + \frac{C_S Le - Sr C_T}{3(1 - Du Sr)} \Psi_0(3y - 4y^3) - a_S y$$
(14)

Où  $\Psi_0$  est la fonction de courant au centre de la cavité. Elle caractérise l'intensité de l'écoulement et a pour expression :

$$\Psi_0 = \frac{R_T}{8} \left( \mathcal{C}_T + N \mathcal{C}_S \right) \tag{15}$$

Les constantes  $a_T$  et  $a_S$  sont définis par :

$$a_S = \frac{1 - S_r}{1 - D_u S_r}$$

Après l'intégration des équations (13) et (14) en tenant compte des conditions aux limites (4.2), les bilans d'énergie et de masse sur un volume de contrôle on obtient les expressions suivantes pour  $C_T$  et  $C_S$ :

$$C_T = \frac{4b\Psi_0[2b(a_T - a_S DuLe) + Le\Psi_0^2]}{3\left[(2b + \Psi_0^2)(2b + Le^2\Psi_0^2) - DuSr(2b - Le\Psi_0^2)^2\right]}$$
(16)

$$C_{S} = \frac{4b\Psi_{0}[2b(a_{S}Le - a_{T}Sr) + Le\Psi_{0}^{2}]}{3\left[(2b + \Psi_{0}^{2})(2b + Le^{2}\Psi_{0}^{2}) - DuSr(2b - Le\Psi_{0}^{2})^{2}\right]}$$
(17)

En combinant (15) avec (16) et (17) et après arrangement, on obtient alors une équation de cinquième ordre de la fonction de courant  $\Psi_0$  tel que :

$$\Psi_0[Le^4\Psi_0^4 - 2bLe^2\Psi_0^2d_1 - b^2d_2] = 0$$
(18)

$$d_1 = R_T^* Le(Le + N) - (Le^2 + 1 + 2LeDuSr)$$
(19.1)

$$d_{2} = 4R_{T}^{*}Le^{2}[1 + NLe - (Du + NSr)(Le + 1) + DuSr(Le + N)] -4Le^{2}(1 - DuSr)^{2}$$

 $a_T = \frac{1 - D_u}{1 - D_u S_r}$ 

Où : 
$$R_T^* = \frac{R_T}{R^{sup}}$$
;  $R^{sup} = 12$ ;  $b = b_0(1 - DuSr)$ ;  
 $b_0 = \frac{15}{16}$ 

On a cinq solutions dont l'une est nulle et correspond à l'état du repos :  $\Psi_0 = 0$ .

Les quatre autres solutions sont les solutions convectives données par :

$$\Psi_0 = \pm \frac{\sqrt{b}}{Le} \left[ d_1 \pm \sqrt{d_1^2 + d_2} \right]^{\frac{1}{2}}$$
(20)

Après substitution des expressions (16) et (17) dans les équations (5.1) et (5.2), les nombres de Nusselt et Sherwood deviennent:

$$Nu = \frac{1}{1 - \frac{2}{3}C_T \Psi_0}$$
(21.1)

$$Sh = \frac{1}{1 - \frac{2}{3}LeC_S\Psi_0}$$
(21.2)

#### 5. RESULTATS ET DISCUSSIONS :

Des simulations numériques ont été effectuées pour déterminer l'effet du rapport d'aspect sur le comportement d'écoulement et le transfert de chaleur et de masse, afin de déterminer le rapport d'aspect minimum au-dessus duquel l'écoulement peut être supposé parallèle. Dans la gamme des paramètres pris en compte dans cette étude, il a été constaté que les résultats numériques peuvent être considérés comme indépendants du rapport d'aspect lorsque A>8 (Figs. 2 et 3). Pour cette raison, la plupart des résultats numériques présentés ici ont été obtenus pour A = 10 avec un maillage de  $80 \times 240$ .

Les résultats numériques en termes de lignes de courant, isothermes et isoconcentrates sont présentés dans la figure 4, de haut en bas, respectivement, pour  $R_T=0$ , Le=2, N=-0,5, Sr=1.1,  $D_u$  0.2 et A=10. À partir de ces résultats, il est clair que pour une cavité peu profonde (A>>1) l'écoulement dans la région du cœur de l'enceinte est sensiblement parallèle alors que la température et la concentration sont stratifiées de façon linéaire dans la direction horizontale.

Les figures 5, 6 et 7 montrent la fonction de courant, les distributions de la température et de la concentration dans le centre de la cavité avec un très bon accord entre les résultats numérique et analytique. L'évolution de l'intensité de l'écoulement, le nombre de Nusselt et le nombre de Sherwood, sont représentés sur les figures 8 pour Le=2, N=-1,  $S_r=0.2$  et différentes valeurs de  $D_u$  (-0.45, -0.2 et 0.02). Il est bien connu [12] que dans le cas où N < 0, la convection survient selon une bifurcation souscritique. Le nombre de Rayleigh souscritique R<sup>sub</sup><sub>TC</sub>, correspond au début de la convection. Avant ce seuil,  $(R_T < R_{TC}^{sub})$ , le transfert de chaleur et de masse se fait par conduction pure  $(\Psi_0 = 0, Nu = 1 \text{ et } Sh = 1)$ . Au-delà de ce seuil  $(R_T \ge 1)$  $R_{TC}^{sub}$ ), quatre solutions à amplitude finie bifurquent de l'état de repos, deux solutions étant stables (traits pleins) et les deux autres instables (traits discontinus). Pour des valeurs de  $R_T$  comprises entre ces deux limites, la solution analytique prédit donc cinq solutions possibles. Pour cette situation, différents comportements de bifurcation sont observées en fonction des valeurs de  $D_u$ . Pour  $D_u = -0.45$ , la bifurcation est supercritique et l'apparition de convections se produit à  $R_T^{sup}$ =16.55. Quand  $D_u$ =-0.2, la bifurcation est caractérisée par une bifurcation supercritique à  $R_T^{sup}$ =80.45 conduisant à une branche de solution instable suivie d'une bifurcation souscritique à  $R_r^{sub}$ =45.64. Il est à noter que l'apparition de la convection se produit à convection nulle, cependant, la bifurcation se produit par convection à amplitude finie. Pour  $D_u=0.02$ , la bifurcation est purement souscritique et l'apparition de la convection se produit à  $R_T^{sub}$ =77.78. Selon la solution analytique, le seuil d'apparition de la convection supercritique est déterminée lorsque  $R_T^{sub}$  est determine quand  $\Psi_0=0$  et  $d_2=0$ . Cependant, pour le début de convection souscritique au seuil critique  $R_T^{sub}$  pourrait être obtenue à partir de  $d_1^2 + d_2 = 0$ . À partir des figures 8, 9 et 10, on constate que l'augmentation de Sr rend le système plus instable et déclenche l'écoulement convectif précoce. L'intensité de l'écoulement  $\Psi_0$  et le débit de transfert de chaleur *Nu* augmentent de manière significative. Toutefois, le nombre de Sherwood diminue lorsque  $R_T$  est grande

#### CONCLUSION

La convection naturelle à double diffusion, dans une couche poreuse horizontale soumis à des flux uniformes de chaleur et de masse, a été étudiée analytiquement et numériquement en présence des effets Soret et Dufour. Les solutions numériques ont été obtenues en utilisant une méthode de différences-finies, mais la solution analytique a été obtenu pour une cavité élongée (A>>4) en utilisant l'approximation d'écoulement parallèle au centre de cavité étudié. L'influence paramètres gouvernants sur l'intensité de l'écoulement et les nombres de Nusselt et de Sherwood a été étudiée et discutée. Les principales caractéristiques prédites par la solution analytique sont validés avec précision par les solutions numériques des équations gouvernantes. Il a été constaté que l'effet Dufour peut modifier considérablement la stabilité de la convection, qui à son tour affecte les taux de transfert de chaleur et de masse. L'existence d'écoulement convectif souscritique et supercritique a été démontrée et le comportement des bifurcations dépendent fortement des paramètres et des nombres de Dufour.

## RÉFÉRENCES

- D.A. Nield, A. Bejan, Convection in Porous Media (2006) 3<sup>rd</sup> Edition.
- [2].K. Vafai, Hand book of porous media, Taylor and Francis, New York (2005) 2<sup>nd</sup> Edition.
- [3].K. Vafai, E.R.G. Eckert, R.M. Drake, Analysis of heat and mass transfer, McGraw-Hill, New York (1972).
- [4].J.K. Platten, J.C. Legros, Convection in liquids. Springer, New York (1984).
- [5].A. Mojtabi, M.C. Charrier-Mojtabi, Double-diffusive convection in porous media, Handbook of Porous media, Taylor and Francis, New York(2005) 269-320, 2<sup>nd</sup> Edition.
- [6].R. Rosanne, M. Paszkuta, E. Tevissen, P.M. Adler, Thermodiffusion in a compact clay. J. Colloid Interface Sci. 267 (2003) 194–203
- [7].L.B. Benano-Melly, J.P Caltagirone, B. Faissat, F. Montel, P. Costeseque, Modeling Soret coefficient measurement experiments in porous media considering thermal and solutal convection. Int. J. Heat Mass Transfer, 44 (2001) 1285–1297.
- [8].11. J.A. Weaver R. Viskanta, Natural convection due to horizontal temperature and concentration gradients-2. Species interdiffusion, Soret and Dufour effects. Int. J. Heat Mass Transfer. 34, 12 (1991) 3121-3133.
- [9].12. M. Mamou, P. Vasseur, Thermosolutal bifurcation phenomena in porous enclosures subject to vertical temperature and concentration gradients, J. Fluid Mech., 395 (1999) 61-85.
- [10]. 13. M. Mamou . 1998 Convection thermosolutale dans des milieux poreux et fluides confinés, Thèse de Doctorat, École Polytechnique de Montréal, Canada

- [11]. 14. L. Kalla, Convection naturelle au sein d'une cavité poreuse saturé par un fluide binaire, Thèse de Doctorat, École Polytechnique de Montréal, Canada
- [12]. 15. S. Dina, Effet du champ magnétique sur la convection naturelle d'un fluide binaire en milieu poreux confiné, mémoire en science appliquée, École Polytechnique de Montréal, Canada