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EFFECT OF GEOMETRICAL SINGULARITY ON BUCKLING BEHAVIOR
OF RECTANGULAR LAMINATED PLATES
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Résumé

Le présent travail concerne l'analyse de 1'instabilité par flambage élastique des plaques stratifiées
munies d'une singularité géométrique. Le flambage des plaques stratifiées en matériaux composite
est un phénomeéne trés complexe, pour I'analyse du flambage des plaques minces stratifiées, nous
avons employé un ¢lément de quatre nceuds 32 degré de liberté, la formulation a été basée sur la
théorie de Kirchhoff étendue au plaque stratifiées en adoptant 'approche mono couche équivalente.

Nous présentons en suite la formulation du probléme d'instabilité en utilisant le principe de la
variation seconde de I'énergie potenticlle pour la construction des matrices de rigidité. Une série
d'exemples a été testé au flambage des plaque mince isotropes et stratifiées, les résultats obtenus et
comparés a ceux disponible dans la littérature, ont montré la rapidité de convergence et la bonne
performance de 1'é1ément. Une étude paramétrique a été entreprise pour mettre en évidence 1'effet de
certains parametres sur le comportement de flambage des plaques minces munies d'ouvertures carré
isotrope et stratifiées ont montre que la charge critique de flambage augmente avec I'augmentation de
l'ouverture pour certaines condition aux limites.

Mots clés : Stratifi€¢, Composite, Flambage, Instabilité, Plaque, Singularité géométrique,
Elément fini

Abstract

In this paper, we present an analysis of a buckling behaviour of rectangular and square laminated ;S- MOKHTARI
plates with central cutouts. The laminates have in general an anisotropic behaviour, significant zA' TATI
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he purpose of the mechanical analysis of the structures

is to determine stresses, deformation or displacements
which will be compared with acceptable values, based on
the properties of materials. And this is according to service
needs or simply for esthetics reasons. The analysis of the
structures to instability behavior is less frequent in spite of
the importance of the phenomenon underlined by the
rupture in service of many monumental structures. The
finite element method allowed advance up to the point of
sophistication in the analysis of the structures of complex
geometries and under the action of any type of loads, which
was not the case with the analytical methods. Thin
laminated structures made of composite materials are
widely used nowdays. These structures are used in vast
fields, particularly in aeronautics, automotive industry,
shipbuilding and civil construction as alternative to
traditional materials such as steel and concrete. Indeed,
This large utilisation is due to advantages of composite
materials such as light weight, corrosion resistance and
ability to vary their properties over wide range of values.
Although composite materials have existed for many years,
there is still much about them that needs to be understood
before they will be accepted as building materials in civil
engineering structures. When thin structures are subjected
to loading of mechanical or thermal nature, their cross
sections undergo compressive stresses as well as tensile
stresses. The compressive stresses can have increasingly
large values so that buckling takes place. These thin
structures become unstable for loads or relatively weak
variations in temperature, and buckle in the elastic region.
Consequently, buckling presents a very great consideration
when designing this type of structures. In laminated
structures, the existance of cutouts is very frequent. They
are commonly used as access ports for mechanical and
electrical systems, or simply to reduce weight. That is the
reason to study the behaviour of this type of structures.

Very main efforts are provided through these last
decades with an aim of studying the bending or the
buckling behavior of thin plates and shells. For this end,
various means were used, namely the analytical methods
undertaken by S. Timoshenko and W. Kriger [1] [7] and
numerical methods, especially the finite element method
which was the subject of many investigations to develop
increasingly effective and reliable elements. P. G. Bergan et
al. [2] described a quadrilateral finite element for thin and
moderately thick plates. Their formulation was not based
on the traditional variation principle but is rather based on a
free formulation which satisfies the mathematical
convergence requirements. The transverse displacement is
expanded in a set of fundamental rigid-body and constant
curvature mode plus a set of higher order modes. By using
this formulation, the authors avoided the many difficulties
encountered with the elements based on Resister theory.
Very good results have been obtained for the thin and thick
plates of various geometries.

Reinhard and al [6] described a quadrilateral finite
element of a lower order for the inflection of the thin and
thick plates, by wusing bilinear approximations for
displacement and rotations out of plan.
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The authors used eight modes of deformations in order
to improve the results. Although the element is of a lower
order, the obtained results obtained are excellent.

Calvin D. Austin [5] undertook a comparative study on
the buckling of the laminated thin plates in FRP. The author
carried out the calculation of the critical loads buckling of a
number of laminated plates for a number of parameters by
the means of commercial software ANSYS and confront
the results obtained to those obtained analytically [7]. The
objective of the work was to test the performance of the
software in the analysis of the buckling of the laminated
thin plates. The author noted that the + 45 degrees
orientation of the layers was optimal for the cases of the
simply supported plates but it was not the case for the other
boundary conditions.

F. Auricchio, proposed a new finite element for the
analysis of laminated composite plates. The element is
based on first-order shear deformation theory and is
obtained through a mixed-enhanced approach. To improve
the in-plane deformation, the author adopted the variational
formulation that includes as variables the transverse shear ,
and the enhanced incompatible modes.

In this work which is a contribution to the analysis of the
laminated thin plates, an approach of quadrilateral finite
element for bending and mechanical or thermal buckling is
established. The proposed element is a combination of a
membrane Isoperimetric quadrilateral element and a
rectangular Hermit plate element of first order, transformed
to be adapted to the case of general inflection of thin plates.

The formulation is based on the minimal potential
energy principle adopting Kirchhoff-Love theory. Almost
elements adopt the Reissner theory, especially during the
analysis of the composite material structures owing to the
fact that the effect of shearing is of great importance in
these cases. However in the present study, transverse
shearing was neglected. That is justified by the fact of
supposing that the Kirchhoff theory is checked for all the
layers which are rather thin, identical and having transverse
rigidity modulus of the same order of magnitude and
obviously this assumption is supposed to be checked for the
whole plate [9].

More, especially during the analysis of buckling, the
inflection is supposed to be weak. Indeed the comparison
between the results and those obtained analytically or using
other type of element taking in account transverse shearing,
showed the efficiency of this approach.

1. FINITE ELEMENT FORMULATION

The proposed eclement is a combination of an
isoperimetric membrane quadrilateral element and of a first
order Hermit rectangular plate element of high degree of
accuracy. The element has 4 nodes of 8 degrees of freedom
each.

The Cartesian and intrinsic co-ordinates are shown on
the figure 1. The components of the mid -plane
displacements are noted u and v and w.
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1.1. Kinematics relations

The kinematics relations strains displacements are given
by [4]

&, =)+ 7K,

(D
e, =&’ + 12k
y y y
0
&y =& TIK,
Where:
o _du 1wy’
T 2\ ax @)
o v 1{ow)
g, =—+—| —
Yooy 2\ oy
o OV Ou owow
gy =—+—+——
YT ox Oy 0x oy
and
o’w
k =- 3
- 3)
ky:_(’;-yvzv
2
K =2dW
Yy axay

1.2. Behavior Law

The forces and the moments resultants are related to
mid-surface strains and to the curvatures by [4] :
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Extensional, coupling and bending stiffness of the laminate
are defined by :
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With 6“- are the stiffness coefficients for principal

material directions.

The strain potential energy of the element is given by
[4]:
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As the elemenf3} a combination of an isoperimetric
membrane element and a high precision plate element of
Hermit type, the interpolation functions of the co-ordinates
and displacements through the element are given by:

- the real co-ordinates are connected to the co-ordinates of
the reference element by:

X(EM=ZNiEn)-x, yEM=ZNiEn)y: (i=1234) (10)
In the same way, the in plane displacements are given by:
uEn) =X Ni G, vEM) =ZNi(En).vi (i=1234) (11)
Where:
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Displacements out of plane of the element of reference is
expressed as the products of one dimensional first order
Hermit interpolation polynomials [4]
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Then, after transformation, the interpolation functions of
the real element are written :
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The displacements state leads to a 32 degrees of freedom
element with 8 degrees of freedom by node and the
resulting displacement vector is:

(i=1,2,3,4) (18)
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By subsisting the polynomials of interpolation in the
equation of energy, we obtain:
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in which:

{ q}is the resulting displacement vector of the element
which is a 32x1 vector; [S,], [Sk ] are 3x32matrices of
which relate the linear membrane strain and curvature of
the element to vector {q} respectively;

[ G ]is a2x32matrix which relates the vector [ W/ W, W /
y]to the displacement vector {q};

|J | is determinant of the Jacobean matrix.

1.4. Buckling Analysis

In almost buckling problems of plates, the determination
in advance of the distribution of the stresses through the
plate is not necessary. However in the general case, when
the stresses are not uniformly distributed through the plate,
in particular when the plate contains cutouts or undergoes a
non uniform variation of temperature, it will be necessary
to determine the distribution of the membrane efforts as
first stage in this analysis.

With:

WNof=([alse T+ [B1s, D} (23)

By setting the second variation of the strain energy to
zero, the standard eigenvalue problem is obtained :

[Kg 24

Where [K,] is the global geometry matrix which is the
assembly of the element geometry matrix [K,°],

KX+ AKG] {X} =0

H[G] [N, G J7|dédn (25)

2. NUMERICAL RESULTS AND DISCUTION

2.1. problem presentation

Table 1 : Geometrical characteristics

a (cm) a/b h
20 1.0 1,05
30 1,5 1,05

Mechanical proprieties of lamina :

El =123 x10° N/em® E2 = 8,2 x 10° N/cm?
G12=4,1x 10’ N/em®

v12=0,5

The plate is formed by 6 laminas with sequence [90/-90/0] s
Boundaries conditions

We consider 2 boundries conditions
Simply supported plates on 4 edges (4SA)
Clamped plates on 4 edges (4C)

y

Nx
N le—
N le—
o
N le—
X

a

Figure 1 : Uniaxial Compression

Table 2 :Critical load N, for a simply supported laminated [90/-
90/0] s

Ner (m,n)
a/b |Meshes| 4x2 4x4 5x5 8x8 10x10 |analytica |*
[5]
1 Ncr 23.492123.60966 (23.808 | 23.8846 |23.885 | 23.885 |(2.1)
1.5 | N/em [21.660| 21.689 |23.294| 23.857 [23.885| 23.885 |(3.1)
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— 2

Figure 2 : The plate laminated with an Orientation (90, -90,0) s
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Figure 3 : Variation of uniaxial buckling load for simply
supported plates

3. BUCKLING BEHAVIOR OF PLATES WITH
CUTOUTS

a >
Figure 4 : Finite element mesh

4. NUMERICAL RESULTS AND DISCUSSION

The plates are subdivided into 2x2, 4x4, 6x6 and 10x10
elements as for the first study. The computed values of the
critical loads for various parameters by the present element
the results presented on the table 2 and over of figures 3
and 4 show the performance of the element where
compared to results obtained analytical by Whitney.
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In this chapter, there is an analysis of some cases of the
small plates of the singularities centered during the
analysis, certain watches results that the presence of
opening under certain conditions of support increases the
critical load of buckling compared to that relating to the
corresponding blank flanges. The results as showed as the
position of the opening can have a direct influence on the
value of the critical load in certain measurements.
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0 0102030405060,70,8
b/d

Figure 5 : The variation Fcr in function b/d for plate Laminated
a/b=1

Fcr (N/cm)
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Figure 6 : The variation Fcr in function b/d for plate Laminated
a/b=1,5

In figures 5 and 6 there is an analysis of some cases of
the small plates of the singularities centered During the
analysis, certain watches results that the presence of
opening under certain conditions of support increases the
critical load of buckling compared to that relating to the
corresponding blank flanges. The results as showed as the
position of the opening can have a direct influence on the
value of the critical load in certain measurements.

CONCLUSION

Buckling laminated plates is a very complex
phenomenon because of the specificity of this type of the
materials. Indeed, the laminates have in general an
anisotropic behavior, significant shearing transverse
deformations in the direction of the thickness and a
coupling extension bending.

For buckling analysis of the laminated thin plates, a four
nodes finite element of 32 degrees of freedom was
developed the formulation was based on the theory of
kirchhoff extension to the plate laminated adopting the
equivalent mono-laver Approach. For the construction
rigidity and geometrical matrices, the Principe of minimum
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potential energy was used. The developed element was
tested to buckling of laminated thin plates.

The obtained results when compared to those available
in literature, showed the rapidity of convergence and the
good performance of the element. In continuation, we
showed the effect of square opening centers on the plates
square or rectangular solicited by a uniaxial pressing, the
critical load of buckling decrease. But For the case of the
laminated plates, the effect of the dimension of the opening
depends on the type of boundary conditions. The critical
load of buckling believes with the increase in the dimension
of the opening, although it keeps the same pace for the case
of the simply supported plates.
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