
Sciences & Technologie B– N°24, décembre (2005), pp. 47-56.

© Université Mentouri Constantine, Algérie, 2005.

CIRTA: A FORMAL LANGUAGE FOR MODULAR ECATNETS SPECIFICATION

Reçu le13/06/2004 – Accepté le 12/11/2005

Résumé
CIRTA (''Construction Incrémentale des Réseaux de Petri à Termes Algébriques”) est un

langage de spécification dotant les ECATNets (“Extended Concurrent Algebraic Terms Nets”)
[6][10] avec des concepts de modularité leur permettant d’être plus appropriés pour des applications
réelles. Cet article examine les mécanismes de structuration fournis par CIRTA, pour la conception
des systèmes concurrents complexes. Deux techniques de structuration sont présentées. La première
se base sur l’utilisation des modules CIRTA qui étendent les ECATNets avec les concepts de nœuds
interfaces et de nœuds composés. Le second mécanisme concerne quelques opérations de
structuration des modules CIRTA telles que : l’importation, la composition et le renommage. La
sémantique de chaque spécification CIRTA utilisant ces mécanismes est définie par la donnée de
l’ECATNet ayant le comportement équivalent.
Mots clés: Langage de spécification, réseaux de Petri, ECATNets, spécification algébrique.

Abstract

CIRTA (''Construction Incrémentale des Réseaux de Petri à Termes Algébriques”) is a
specification language endowing ECATNets (''Extended Concurrent Algebraic Terms Nets”) [6][10]
with modularity concepts to make them more suitable for real-world applications. This paper
addresses the structuring mechanisms provided by CIRTA, for the design of complex concurrent
systems. Two structuring techniques are presented. The first one relies on the usage of CIRTA
modules which extend ECATNets with the concepts of interface nodes and composed-nodes. The
second mechanism concerns with some structuring operations on CIRTA modules namely:
importation, composition and renaming. The semantics of each CIRTA specification using these
constructs is defined by giving the behavioral equivalent ECATNet.
Key words: Specification language, Petri nets, ECATNets, algebraic specification.

oncurrent systems are characterized by their dedicated function, real-
time behavior, and high requirements on reliability and correctness. In

order to devise systems with such features, the design process must be based
upon a formal specification that captures the characteristics of concurrent
systems. Many computational models have been proposed in the literature to
specify such systems, including extensions to finite-state machines, data-
flow graphs, and communicating processes. Particularly, Petri nets (PNs)
are interesting for the specification of this sort of systems: for instance, they
may specify parallel as well as sequential activities and they easily capture
non-deterministic behaviors. PNs have been extended in various ways to fit
the most relevant aspects of concurrent systems. We can find several PN-
based models with different flavors in [2][3][4]. ECATNets [5][8][10] are
high-level Petri nets model, in which tokens are algebraic terms [17]
holding information. The important intrinsic features of ECATNets are their
concurrency and asynchronous nature. These features together with their
flexibility have stimulated their application in different areas [5][6][10].
However, the main weakness of classical ECATNets pointed out along the
years, is the lack of modularity, forcing the system designer to cope with
many details at the same time. In order to develop and analyze complex
systems, the system developers need structuring and abstraction concepts
that allow them to work with selected part of the specification without being
distracted by the low-level details of remaining parts. Therefore, the use of
techniques to build up compact specifications through the use of a “divide to
conquer” strategy is nowadays, commonly accepted as necessary. Common
techniques use different levels of abstraction enabling the construction of
the specification in an incremental way. Consequently, for large and
complex systems, an adequate specification formalism must deal with
modularity concepts. To overcome these limitations of ECATNets, the
CIRTA [24] language has recently been introduced as formalism for
specifying complex and concurrent systems.

C

N. ZEGHIB1
M. BETTAZ2

1Département d'Informatique
Université Mentouri-
Constantine. Algérie.
2Department of Computer
Science.Philadelphia
University- Amman Jordan

بناء تزايدي لشبكات بيتري ذات (سيرتا
زز الشبكات هي لغة وصف تع) الحدود الجبرية

المتنافسة الموسعة ذات الحدود الجبرية بمفاهيم
هذه . التركيب لتجعلها مهيئة للتطبيقات الواقعية

المقالة تدرس ميكانزمات البناء التركيبي التي
توفرها لغة سيرتا لتصميم الأنظمة المتنافسة

التقنية . هناك تقنيتان للبناء التركيبي. المعقدة
الوصف " وحدات" مالالأولى ترتكز على استع

التي توسع الشبكات المتنافسة الموسعة ذات
العقد "و " العقد المشتركة"الحدود الجبرية بمفهومي

أما التقنية الثانية فتخص بعض عمليات ". المركبة
التركيب التي تطبق على وحدات الوصف و

إعادة " و" التجميع"، "دالاستيرا:" نخص بالذكر
ي لكل وصف في لغة المعنى الرياض". التسمية

سيرتا يستعمل هذه التقنيات هو معرف بإعطاء
الشبكة المتنافسة الموسعة ذات الحدود الجبرية

 .ةالمكافئ
 لغة الوصف، شبكات بيتري، :الكلمات المفتاحية

الشبكات المتنافسة الموسعة ذات الحدود الجبرية،
 .الوصف الجبري

 ملخص

N. ZEGHIB M. BETTAZ

48

YX
t2

f(X)⊕ b

X f(Y)

X
t1

t3

p4 :datap3 : data

p2 :data

p1 :data

a

It extends ECATNets with module concept and
structuring operations so that large systems can be specified
and understood stepwisely. The design of complex systems
may thus be reduced to the design of simpler and more
manageable modules. In this paper, we provide a formal
definition of CIRTA modules, and we precise the formal
semantics for each structuring mechanism by giving the
equivalent (not modular) ECATNet.

• Paper organization

The remainder of this paper is organized as follows.
Section.2 gives an overview of ECATNets. Section.3 shows
how ECATNets are extended by the concept of CIRTA
module. Section.4 defines the syntax and the semantics of
some structuring operations on CIRTA modules. In
Section.5, an example of specification is presented to
illustrate the use of CIRTA language. Section.6 proposes an
approach to translate CIRTA specifications into rewriting
theories to allow formal analysis of complex concurrent
systems. Some concluding remarks are set in Section.7.

AN OVERVIEW OF ECATNETS

ECATNets are High-Level nets [6][10][8][5] devoted to
modeling non-deterministic and concurrent systems. They
allow to describe complex systems, using Petri nets [2][19]
to model synchronization constraints and abstract data types
[17] for specifying the data structures.

Definition

An ECATNet is a pair Ε =(Σpec, Ν) where Σpec =
(Σ,E) is an algebraic specification and
 Ν = (P, T, σ, Cap, IC, DT, CT, TC, M) is a net such
that:

• Σ=(S, Op) where S is a set of sorts and Op is a set
of operations.

• E: is a set of Σ-equations.
• P: a finite set of places.
• T: a finite set of transitions P∩T=∅.
• σ: P →S is a map which associates a sort to each
place.

• Cap :P → -{0} is the place capacity function.
• IC : PxT → mT∑(V) ∪{~α / α∈mT∑ (V)}∪{empty}
is the Input Condition function.

 (mTΣ(V) denotes the set of ∑-terms multisets
with variables in V)
• DT : PxT → mT∑ (V) ∪ { ∀} specifies the
Destroyed Tokens.

• CT : PxT →mT∑(V) is a function defining the
Created Tokens.

• TC :T→ T∑,bool (V) is the Transition Condition.
 (T∑,bool (V) is the set of ∑-terms of sort bool using
variables in V)

• M : P → mT∑ (∅) is a marking of the net , such
that:

 ∀p∈ P (M(p) ∈ mT∑,s (∅)) ∧ (σ(p)=s)∧
(|M(p)| ≤ Cap(p))

The graphical representation of a generic net Ν is given
in Figure 1, where p:s,n denotes a place p of sort s and
capacity n (we note p:s a place p with infinite capacity).
It should be noted that for notation convenience, we omit
DT(p,t) (or CT(p,t)) in the graphical representation of the
net when IC(p,t)=DT(p,t).

Figure1: A generic representation of an ECATNet.

At any time, a transition t is enabled to fire in making

M, when various conditions are simultaneously true. The
first condition is that every IC(p,t) for each input place p is
enabled (as shown in Figure 2). The second condition is
that the transition condition TC(t) is true. Finally the
addition of CT(p’,t) to each output place p’ must not result
in p’ exceeding its capacity when this capacity is finite.
When t is fired, DT(p,t) is removed from the input place p
and simultaneously CT(p’,t) is added to the output place p’.

IC(p,t) Enabling conditions
IC(p,t)=α where α∈ mT∑(V) α ⊆M(p)

IC(p,t)=~α where α∈ mT∑(V) not (α ⊆ M(p))
IC(p,t)= empty M(p)= ∅

DT(p,t) Destroyed tokens

DT(p,t)=α where α∈mT∑(V) M(p):= M(p)-α

DT(p,t)= ∀ M(p) := ∅

Figur.2: Input conditions and destroyed tokens.

Example

Figure 3 shows a simple example used to illustrate the
main characteristics of ECATNets.

Figure 3: An ECATNet example.

The tokens in the net are of sort data. The algebraic

specification of this sort is given by defining two constants
(a and b) and an unary operation f which semantics is given
by two equations (f(a)= b and f(b)=a). The Places of the
ECATNet, drawn as circles or ellipses, represent the

TC (t) M(p’) M(p)
IC(p,t)

DT(p,t)

CT(p’,t)
p : s,n p’ : s’,n’ t

Spec Ε0 is
 sort data
 op a :→data
 op b :→data
 op f(_) :data→data
 vars X,Y : data
 eq f(a)=b
 eq f(b)=a

end

CIRTA: A Formal Language For Modular ECATNets Specification

 49

possible states of the data. The actions performed by this
system are indicated by means of rectangles called
transitions. Places and transitions are connected by directed
arcs, which are annotated by algebraic terms. In the initial
state only transition t1 is enabled (may fire). When t1 fires,
the token a (X=a) is removed from place p1 and
simultaneously two tokens b (f(X)=b) are added to p2.
Hence transitions t2 and t3 becomes enabled. In commonly
known algebraic nets, only one transition in this case is
arbitrary selected and fired; while in ECATNets,
concurrent as well as sequential firing are possible. Hence
after the firing of t1 in the example of Figure.3, we can
have one of the following execution sequences: t1;t2 t2;t1
t1;t1 t2;t2 t1//t2 t1//t1 t2//t2 (where ti;tj denotes the
sequential execution of ti and tj , and ti//tj is the
concurrent firing of ti and tj).

CIRTA MODULE

The modularity mechanism is defined in the “common”
way used by top-down and bottom-up approaches,
supporting refinements and abstractions, and it is based on
the concept of module. In CIRTA language, a module is
stored in a page. Every page may be used several times in
the same specification. The pages with references to a given
module M are referred as super-page (upper-level pages) of
M, while the pages contained in the module M are referred
as sub-pages (lower-level pages).
Intuitively, a CIRTA module contains three types of nodes
(a node is either a place or a transition): composed nodes,
elementary interface nodes and elementary non-interface
nodes. Distinctive graphical notations are used for the
representation of each type of nodes as shown in Figure4.

 Place Transition

Elementary non-interface nodes

Elementary interface nodes

Composed nodes

Figure 4: Graphical representation of nodes in CIRTA modules.

• Elementary non-interface nodes

An elementary non-interface node is an ordinary place
or transition as commonly known in the Petri nets
formalism. These nodes are private to the module in which
they are declared, and consequently they are not accessible
to other modules.
• Elementary interface nodes

Informally, interface nodes in a CIRTA module is a set
of places and/or transitions which are shared with other
modules. The intuitive idea behind sharing places is to
allow the user to specify that all instances of an interface
place are considered to be identical, i.e., they all represent a
single place even though they are drawn as individual
places in different modules. This means that they have the
same initial marking and when a token is added/removed
to/from one instance of this place, an identical token has to

be added/removed to/from all other instances of it.
Similarly, all instances of an interface transition have to be
seen as representing one indivisible action. Each instance of
an interface transition describes a part of a more complex
action and all parts must occur together. An interface
transition is enabled if all its instances in all modules are
enabled. The change produced by the firing of an interface
transition is the sum of changes produced by all its
instances. For simplicity, each interface node is considered
having the same name in all modules.

• Composed nodes

The composed nodes allow the user to relate a node to a
more complex module which usually gives a more precise
and detailed description of the activity represented by the
composed node. The idea is analogous to the hierarchy
constructs found in many graphical description languages
(such data flow diagrams). At one level, we want to give a
simple description of the specified system without having
to consider internal details about how it is carried out. At
another level, we want to specify the more detailed
behavior. Every composed-node has an associated sub-
page. However, the places connected to a composed-
transition exist only at the super-page level; the places
presented at the sub-page will be merged with the
associated places at the super-page. As far as one
composed-transition can not be executed like an ordinary
transition and also that a composed-place cannot be
considered as an ordinary place (which means that it cannot
hold a marking), they act just as a graphical modeling
convenience enabling the designer to structure the graphical
model in an expressive way.

Definition

A CIRTA module is a tuple M =(Σpec, Ν, Pageset, π,
δ) where Σpec = (Σ, E) is an algebraic specification and
Ν = (P, T, τ, σ, Cap, IC, DT, CT, TC, M) Such that:
• Σ=(S, Op) where S is a set of sorts and Op is a
set of operations.
• E: is a set of Σ-equations.
• P: a finite set of places.
• T: a finite set of transitions P∩T=∅.
• τ: P∪T→{e, c, i} is a map which associates a type
for each node of the net:

 τ(n) = e if n is an elementary non-interface node.
 τ(n) = c if n is a composed node.
 τ(n) = i if n is an elementary interface node.

• σ: {p ∈P/τ(p) ≠c}→S is a map which associates a
sort to each no-composed place.
• Cap : {p ∈P/τ(p) ≠c} → -{0} is the place
capacity function.
• IC : PxT → mT∑(V) ∪ {~α/ α ∈ mT∑ (V)}
∪{empty} is the Input Condition.
• DT : PxT → mT∑ (V) ∪ { ∀} is the Destroyed
Tokens.
• CT : PxT →mT∑(V) Created Tokens.
• TC : {t ∈T/τ(p) ≠c}→ T∑,bool (V) Transition Condition.

N. ZEGHIB M. BETTAZ

50

• M : {p ∈P/τ(p) ≠c} → mT∑ (∅) is a marking of the net,
such that: ∀p∈{p ∈P/τ(p) ≠c} (M(p) ∈ mT∑,s (∅)) ∧
(σ(p)=s)∧ (|M(p)| ≤ Cap(p))
• Pageset: is a finite set of pages (the sub-pages of M)
• π: {n ∈P∪T/τ(n) =c} → Pageset is the map of page
assignment.
• δ: {n ∈P∪T / τ(n) =c}→ Br is a port assignment
function. It is defined from composed nodes into binary
relations such that δ(n) ⊆ •n• x Node(π(n)) (where •n•
denotes adjacent nodes of n, and Node(M) is the set of
nodes in module M))

Example

For instance, let us consider the CIRTA module M1 of
Figure 5. M1 has two elementary interface places p1 and p3
which are shared with other modules. Apart from t1 which
is a composed transition, all other nodes are elementary
non-interface nodes. The part M2 in Figure 6 is a sub-page
describing the refinement of the composed transition t1, the
functions τ, π and δ are defined by:
τ(p1)=τ(p3)=i, τ(t1)=c, τ(t2)=τ(t3) =τ(p2)=τ(p4)=e, Pageset
={ M 2}, π(t1)= M 2 δ(t1)={(p1,p1’), (p2, p2’)}

Figure 5: An example of CIRTA module M 1 .

Figure 6: A sub-page of the CIRTA module M1.

Dynamic Semantics of a CIRTA module

The behavior of a CIRTA module is defined here by
giving the behavioral equivalent ECATNet. Therefore
composed-nodes must be substituted by the associated sub-
pages. Each such substitution is a step refinement in the
CIRTA specification. The following steps compose the
merging process of the sub-page into the super-page:

• References of places and transitions used by the sub-
page will be eventually changed in order to produce unique
labels;
• One copy of each sub-page is inserted at the super-
page; the composed-node is removed;
• The arcs connected with a composed-place are
connected to the referred boundary place; for arcs
connected with a composed-transition, void boundary
places of the sub-page are merged with the associated
places at the super-page (arcs and associated arc
inscriptions in the sub-page are kept).
• The interface of the sub-page is composed by a set of
boundary places or transitions. This set of nodes will
constitute the glued points between the sub-page and the
super-page, besides the common interface nodes.

Given the CIRTA module M1 of Figure.5; we can
construct the equivalent ECATNet Ε1 illustrated in
Figure7.

Figure 7: Equivalent ECATNet of the CIRTA module M1.

STRUCTURING OPERATIONS ON CIRTA
MODULES
Importing modules

A CIRTA module can import an other CIRTA module
in order to enrich the algebraic specification (with new
sorts, operations, and axioms), and/or to extend the net
(with new places, transitions, and arcs). The syntax of
module importation is

Spec M 1 is
 Use M 2
 op f(_) :data→data
 vars X,Y : data
 eq f(a)=b
 eq f(b)=a
end

t1 : M 2 p1→p1’
p2→p2’

X
t2

Y

X f(Y)

t3

p4 :datap3 : data

p2 :data

p1 :data

a

Spec M2 is
 sort data
 op a :→data
 op b :→data
 op h(_): data→data
 op g(_,_) :data data →data
 vars X,Y : data
 eq g(X,X)=h(X)
 eq g(a, b)=b
 eq g(b, a)=a
 eq h(a)=b
 eq h(b)=a
end

Y

p2’ : data

h(X)

g(X,Y)

X
X

X
T

T’

p4’ : datap3’ : data

p1’ : data

Spec Ε1 is
 sort data
 op a :→data
 op b :→data
 op f(_) :data→data
 op h(_):data→data
 op g(_,_) :data data →data
 vars X,Y : data
 eq f(a)=b
 eq f(b)=a
 eq g(X,X)=h(X)
 eq g(a, b)=b
 eq g(b, a)=a
 eq h(a)=b
 eq h(b)=a

end

X
Y

p1 :data

g(X,Y)

X

a

t2

X f(Y)

t3

p4 :data p3 : data

p2 :data

T

T’

h(X)

Y
X

X

p4’ : data p3’ : data

CIRTA: A Formal Language For Modular ECATNets Specification

 51

< importation> ::= use <Mod>
Where <Mod> is the identifier of the imported module and
use is a CIRTA keyword.

For instance, let M1 be the CIRTA module of Figure 5,
the module M3 in Figure 8 imports M1, adds a new operation
h(_,_) and extends the net of M1 as follows.

Figure 8: An example of module with use operation.

M3 is equivalent to module M3

’ of figure 9.

Figure 9: An equivalent CIRTA module to M3

Module composition

An important module building operator is composition.
It has the syntax

 <composition>:: = make <Mod> = <Mod1> + <Mod2> +
…..+ <Modn> endm

This structuring operation creates a new module <Mod>

that combines all the information in its summands
(<Mod1>, <Mod2>, …..,<Modn>).

Formally, the composition of two modules M1 and M2
(where for i=1 to 2, Mi=(Σpeci, Νi,Pageseti,πi,δi) and Νi =(
Pi, Ti, τi, σi, Capi, ICi, DTi, CTi, TCi, Mi)) is a module M
such that:
 M=(Σpec, Ν, Pageset, π, δ) Ν =(P, T, τ, σ, Cap, IC,
DT, CT, TC, M)) Σpec=(Σ,E)
• Σ =Σ1 ∪Σ2 , E=E1∪E2 , P=P1∪P2,

T=T1∪T2 , Pageset= Pageset1∪Pageset2.
• τ = τ1⊕τ3 , σ = σ1⊕σ2 , Cap =Cap1⊕Cap2 ,

IC =IC1⊕IC2 , DT =DT1⊕DT2.

• CT=CT1⊕CT2, M=M1⊕M2, π=π1⊕π2 , δ=δ1⊕δ2 ,
TC(t)=TC1(t)∧TC2(t).

Notation: Let fi: Ai→Bi be functions (i=1,..,n), we note
f1⊕f2⊕…⊕fn the function defined
 by: f1⊕f2⊕…⊕fn: ∪i=1,n Ai → ∪i=1,n Bi ,
where f1⊕f2⊕…⊕fn (x)= fi(x) if x ∈Ai

Module renaming

The renaming of a module M allows to create a new
module M’ by changing the notations used in M. The
renaming operation uses a set of mappings (also called
renaming morphism), namely a sort mapping, an operator
mapping, a place mapping and a transition mapping. The
syntax of renaming operation is:

<renaming> ::= Make <Mod’> = <Mod>* <renaming
 morphism> endm

<renaming morphism>::=<sort mapping> <operator
 mapping >

 <place mapping><tansition mapping>

<sort mapping> ::= {so <sort.identifier1> to
 sort.indetifier2>}

 <operator mapping>::= {op <op.identifier1> to
 <op.indetifier2>}

<sort mapping> ::= {pl <place.identifier1> to
 <place.indetifier2>}

 <sort mapping> ::= {tr <tans.identifier1> to
 <tans.indetifier2>}

For example, we rename the CIRTA module M1 to get
the new module M4 as follows.
Make M4 = M1 *(so data to bool, op f (_) to not (_), tr t3
to inverse) endm

The module designed by this specification is
represented in figure 10.

Figure 10: Example of renamed module.

Spec M 3 is
 use M1
 op h(_,_) :data data→data
end t4

h(x,f(x))

X

p :data

p2 :data

X

Spec M 3
’ is

 use M2
 sort data
 op f(_) :data→data
 op h(_,_) :data data→data
 vars X,Y : data
 eq f(a)=b
 eq f(b)=a
end

p :data

h(x,f(x))

X

t1 : M2
p1→p1’
p2→p2’

X
t2

Y

f(Y)

t3

p4 :datap3 : data

p2 :data

p1 :data

a

Spec M4 is
 Use M2*(so data to bool)
 op not(_) :bool→bool
 vars X,Y : bool
 eq not(a)=b
 eq not(b)=a
end

t1: M2
p1→p1’
p2→p2’

X

t2
Y

X not(Y)

inverse

p4 :boolp3 : bool

p2 :bool

p1 :bool

a

N. ZEGHIB M. BETTAZ

52

CASE STUDY
In the aim to illustrate the use of structuring mechanism

presented in the above sections, we present an example
consisting of a simple ring network with four different sites.

• Module PACK
PACK describes the packages which are sent in the

network. Each package contains four fields: n-field for the
package number, se-field for the identity of the sender, re-
field for the identity of the receiver, and d-field for the data
content of the package. In this module, we define only the
data type by an algebraic specification which can be seen as
a CIRTA module with an empty net.

The modules DATA NAT and SITE-ID used above are

respectively the algebraic specifications of data, natural
numbers and site identifiers. The algebraic specifications
DATA and NAT are trivial. They are omitted here since the
main principle of the ring network can be understood.

The system description will contain a set of eight

CIRTA modules.

• Module NETWORK
 The figure bellow shows a CIRTA module NETWORK

which has four places and four composed transitions
positioned in a ring.

• Module SITE-ID

This module contains the elements id1, id2, id3 and id4
which are used to identify the individual sites of the
network.

• Module SITE
In this example we can see that all four composed

transitions of NETWORK share the same following CIRTA
module SITE.
The SITE module has three different transitions. Each
occurrence of Make-pack creates a new package. The n-
field of the new package is determined by the token in the
place Num. The se-field of the new package is the site
identifier of the site. Finally the re-field and d-field are
determined by variables r (which can take an arbitrary
value from SITE-IDENT) and d.

The created packages are handled by transition Send,
which inspects the re-field of the package. This is done by
means of the re(p) which denotes the re-field of p. When
re-field indicates that the receiver is different from the

Spec PACK is
 Use DATA NAT SITE-ID
 Sort pack
 op <_,_,_,_>: nat site-id site-id data → pack
 op re(_): pack →site-id
 op se(_): pack →site-id
 op da(_): pack→data
 Vars n: nat s, r: site-id d:data
 eq se(<n,s,r,d>)= s
 eq re(<n,s,r,d>)= r
 eq da(<n,s,r,d>)= d

 end

Spec SITE-ID is
 Sort site-id
 Ops id1:→ site-id
 id2 :→ site-id
 id3 :→ site-id
 id4 :→ site-id
end

Spec NETWORK is

 use Pack
 use SITE1
 use SITE2
 use SITE3
 use SITE4

end

buf-3-to-4 → in
buf-4-to-1 →out

buf-2-to-3 → in
buf-3-to-4 →out

buf-1-to-2 → in
buf-2-to-3 →out

buf-4-to-1 → in
buf-1-to-2 →out

S3: SITE3

S2: SITE2

S4: SITE4

S1: SITE1
Buf-4-to-1: pack

Buf-3-to-4: pack

Buf-1-to-2 : pack

Buf-2-to-3: pack

CIRTA: A Formal Language For Modular ECATNets Specification

 53

present site, the package is transferred to the place out and a
copy of the package is put in the place S-ex (indicating that
the package is sent to an external receiver).

• Modules SITE1, SITE2, SITE3 and SITE4
 Each site has the same behavior as SITE. The main

difference concerns the identifier id of the site. Hence each
module SITEi (i=1,..,4) can be obtained by renaming the
module SITE as follows.

Otherwise the package is sent directly to the place R-int
(indicating that the package is received from an internal
sender).

The modular specification of the network given above is

behaviorally equivalent to the ECATNet presented in
Figuere 11:

Make-pack

Send-ext

Receive-int

Receive-ext

Send-int

p

R-int: pack

out: pack

n+1 n

p

p

p

p

p

p

p

p

S-ex: pack

B: pack

R-ex: pack

Num: nat

In: pack [re(p)=id]

 [re(p)<>id]

[re(p)=id]

[re(p)<>id]

<n, id, r,d>

Spec SITE is
 use PACK
 op id:→ site-id
end

Make SITE1= SITE*(op id to id1) endm.

Make SITE2= SITE*(op id to id2) endm.

Make SITE3= SITE*(op id to id3) endm.

Make SITE4= SITE*(op id to id4) endm.

N. ZEGHIB M. BETTAZ

54

Figure 11: The equivalent ECATNet of the module NETWORK

.

Spec NETWORK is

 use DATA NAT
 Sort pack site-id
 op <_,_,_,_>: nat site-id site-id data → pack
 op re(_): pack →site-id
 op se(_): pack →site-id
 op da(_): pack→data
 op id1:→ site-id
 op id2 :→ site-id
 op id3 :→ site-id
 op id4 :→ site-id

 Vars n: nat s, r: site-id d:data
 eq se(<n,s,r,d>)= s
 eq re(<n,s,r,d>)= r
 eq da(<n,s,r,d>)= d

 end

receive-int2

Make-pack2
send-ext2

send-int2

receive-ext2
Make-pack1

send-int1

send-ext1

receive-ext1

receive-int1

receive-int3

Make-pack3
send-ext3

send-int3

receive-ext3
Make-pack4

send-int4

send-ext4

receive-ext4

receive-int4

Buf-4-to-1 :pack

Buf-3-to-4 :pack

Buf-1-to-2 :pack

Buf-2-to-3 :pack

CIRTA: A Formal Language For Modular ECATNets Specification

 55

VERIFICATION OF CIRTA SPECIFICATION
For the levels of complexity typical to concurrent

systems, traditional validation techniques like simulation
and testing are neither sufficient nor viable to verify their
correctness.

Formal methods are becoming an alternative to ensure
the correctness of designs. In this section we present a
systematic procedure to translate modular CIRTA
specifications into rewriting theories.

The advantages of using rewriting logic as a semantic
framework for concurrency models has been amply
demonstrated in [13][14]. Essentially, rewriting logic has a
simple formalism, with only few rules of deduction. It
supports user-definable logical connectives, which can be
chosen to fit the problem at hand. Besides, it is intrinsically
concurrent; and it is realizable in a wide spectrum of logical
languages [9][7][15] supporting executable specifications.
To verify the correctness of a concurrent system (specified
using CIRTA language) we execute the following steps:

• Step 1: We translate a CIRTA specification into an
ECATNet as stated in definition Section 3.3 and
Section.4.

• Step 2: We generate a rewrite theory as detailed in
[5][11]. Hence, the effect of transitions firing is
expressed by rewrite rules which depend
strongly on the form of the Input Conditions
(IC), and Destroyed Tokens (DT).

• Step 3: We use existing analysis tools [9][7][15] to
check properties expressed as a rewriting logic
formulas.

 It should be noted that all the translation steps can
be done automatically so that the designer is not concerned
with this translation.

CONCLUSION

Our investigation has shown the advantages of using
CIRTA; an ECATNets based language, for complex
concurrent systems specification. CIRTA allows capturing
relevant information characteristics of such systems. In our
approach it is feasible to specify large systems as a set of
comprehensible structured modules and, at the same time,
the essential characteristics of the system may be captured
by the model. Moreover we have also presented an example
of a practical system specification, namely a ring in order to
illustrate the modeling capabilities of CIRTA. To make
easy the formal analysis step of concurrent systems
specified using CIRTA, we have proposed an approach to
translate CIRTA specifications into rewriting theories.
Hence, we take advantages of practical tools developed in
the rewriting logic framework. In future, we will use
CIRTA to develop a formal approach to verification and
transformation based synthesis of concurrent systems.

REFERENCES

[1]- L. Lavagro, A. Sangiovanni-Vicentilli, and E.

Sentovich, ''Models of Computation for Embedded
System Design'', in System-Level Synthesis, A.A.

Jerraya and J. Mermet, ed. Dordecht: Kluwer,1999,
pp.45-102.

[2] P.Maciel, E. Barros, and W. Rosenstiel, '' A Petri net
Model for Hardware/Software codesign'', in Design
Automation for Embedded Systems, Vol.4, pp.243-310,
Oct.1999.

[3] M.Varea, and B. Al-Hashimi, ''Dual Transitions Petri
Net Based Modelling Technique for Embedded
Systems Specification'', in Proc. DATE Conference,
2001, pp.566-571.

[4] M.Sgroi, L. Lavagno, Y. Watanabe, and A.
Sangiovanni-Vincentelli, ''Synthesis of Embedded
Software Using Free-Choice Petri Nets'', in Proc. DAC,
1999, pp. 805-810.

[5] M. Bettaz, M. Maouche ''Modelling of Object Based
Systems with hidden sorted ECATNets''. MASCOTS'
95, Durham, North-Carolina, IEEE, 1995, pp.307-311.

[6] M. Bettaz, M. Maouche, M. Soualmi, and M.
Boukebeche, ''Compact modelling and rapid
prototyping of communication software with
ECATNets: a case study''. Simulation Series Vol.25,
N°1, SCS 1993, pp149-154.

[7] P. Borovansky, C.Kirchner, H. Kirchner, P6E. Moreau,
and M. Vittek. ''ELAN: A logical framework based on
computational systems''. Proc. first Intl. Workshop on
Rewriting Logic and its applications, Vol. 4 of
Electronic Notes in Theoretical Computer Science.
Elsevier, 1996.

[8] M. Bettaz, G. Reggio ''A SMoLCS Based Kit for
Defining the Semantics of High Level Algebraic Petri
Nets'', LNCS 785, pp.98-112, Springer-Verlag, 1994.

[9] M. Clavel, F. Duran, S. Eker, J. Meseguer, and M.-O.
Stehr. ''Maude as a Formal meta-tool''. In J. M. Wing,
J.Woodcock, and J. Davies, editors, Proc. FM'99,
LNCS 1709 , pp 1684-1703. Springer,1999.

[10] K. Djemame, D.G. Gilles, L.M. Mackenzie, M. Bettaz,
''Performance comparison of high-level algebraic nets
distributed simulation protocols''. in Journal of systems
architecture 44 (1998) pp.457-472.

[11] F. Belala ''Un cadre Formel pour l'Analyse des
ECATNets'' Thèse Dept. Informatique, Univ.

 Constantine, 2002.
[12] E. Pelz, and H. Fleishhack, ''Compositional high-level

Petri nets with timing constraints''. Third international
Conference on application of concurrency to system
design ACSD' 03, June 2003, Guimaraes, Portugal.

[13] J.Meseguer. ''Rewriting Logic as a Semantic
Framework for Concurrency''. In U. Montanari and V.
Sassone, editors, Proc. Concur'96, Volume 1119 of
LNCS, pp.331-372, Springer, 1996.

[14] J.Meseguer. ''Resarch Directions in Rewriting Logic''.
In U. Berger H. Schwichtenberg, editors, NATO ASI
Series F: Computer and Systems Sciences 165, pp 347-
398. Springer,1999.

[15] K.Futatsugi and R. Diaconescu. ''CafeOBJ report''.
AMAST Series, World Scientific, 1998.

[16] H. Fleishhack, and E. Pelz, ''Hierarchical timed high
level nets and their branching processes'', in
ICATPN'03, LNCS 2679, pp 397-416, Spinger, 2003.

N. ZEGHIB M. BETTAZ

56

[17] N. Zeghib ''ASTRE: un environnement de spécification
algébrique''. in Proc. of 2nd MCAISE, Tunis 13-
16/04/1992 pp.2-16.

[18] N. Zeghib, and M. Maouche ''Proposition d'une
approche pour la paramétrisation des ECATNets:
application à un système de production''. in Proc. of
MOSIM'97 Rouen France 5-6/06/1997 pp.425-433.

[19] H.J. Genrich. ''Predicates / transition nets''. In High-
Level Petri Nets: Theory and Practice, page 3-43.
Springer-Verlag, 1991.

[20] I. Suzuki, and T. Murata, ''A Method for Stepwise
Refinement and Abstraction of Petri Nets'', in Journal
of Computer and System Sciences, Vol.27, pp. 51-
76,1983.

[21] P.C. Olveczky, and J. Meseguer, ''Specification of
Real-time and Hybrid Systems in Rewriting Logic'', in
Theoretical Computer Science, Vol.285, issue August
2002, pp. 359-405.

[22] R. Alur, C. Courcoubetis and D.L. Dill, '' Model
Checking for Real-Time systems'', in Proc.
Symposium on Logic in Computer Science, 1999, pp.
414-425.

[23] N.Zeghib and M. Bettaz , '' On Synchronous and
Asynchronous Communication in Modular High-level
Nets: The case of ECATNets'' in Proc. ICTTA,
International Conference on Information and
Communication technologies: from Theory to
Application, Damascus, 2004.

[24] N.Zeghib, K.Barkaoui and M. Bettaz, '' CIRTA : An
ECATNets Based Model for Embedded Systems
Specification'', Proceeding of the 2005 International
Conference on Embedded Systems and Applications
ESA’05, Las Vegas, Nevada, June 27-30, 2005

[25] N.Zeghib, Barkaoui and M. Bettaz '' Contextual
ECATNets semantics in Conditionnal rewriting logic '',
Proceeding of The 4th ACS/IEEE International
Conference on Computer Systems and Applications
Mach 8-11, 2006, AICCSA’2006, Dubai/Sharjah,
UAE.

