
Sciences & Technologie B– N°24, décembre (2005), pp. 47-56. 

 

© Université Mentouri  Constantine, Algérie, 2005. 
 

CIRTA: A FORMAL LANGUAGE FOR MODULAR ECATNETS SPECIFICATION 
 

Reçu le13/06/2004 – Accepté le 12/11/2005 
       

Résumé 
CIRTA (''Construction Incrémentale des Réseaux de Petri à Termes Algébriques”) est un 

langage de spécification dotant  les ECATNets  (“Extended Concurrent Algebraic Terms Nets”)  
[6][10]  avec des  concepts  de modularité leur permettant d’être plus appropriés pour des applications 
réelles. Cet article examine les mécanismes de structuration fournis par CIRTA, pour la conception 
des systèmes concurrents complexes. Deux techniques de structuration sont présentées.  La première 
se base sur l’utilisation des modules CIRTA qui étendent les ECATNets avec les concepts  de nœuds 
interfaces et de nœuds composés. Le second mécanisme concerne  quelques opérations de 
structuration des modules CIRTA telles que : l’importation, la composition et le renommage. La 
sémantique de chaque spécification CIRTA utilisant ces mécanismes est définie par la donnée de 
l’ECATNet ayant le comportement équivalent. 
Mots clés: Langage de spécification, réseaux de Petri, ECATNets, spécification algébrique. 
 

Abstract 

CIRTA (''Construction Incrémentale des Réseaux de Petri à Termes Algébriques”) is a 
specification language endowing ECATNets (''Extended Concurrent Algebraic Terms Nets”) [6][10] 
with modularity concepts to make them more suitable for real-world applications. This paper 
addresses the structuring mechanisms provided by CIRTA, for the design of complex concurrent 
systems. Two structuring techniques are presented. The first one relies on the usage of CIRTA 
modules which extend ECATNets with the concepts of interface nodes and composed-nodes. The 
second mechanism concerns with some structuring operations on CIRTA modules namely: 
importation, composition and renaming. The semantics of each CIRTA specification using these 
constructs is defined by giving the behavioral equivalent ECATNet. 
Key words:  Specification language, Petri nets, ECATNets, algebraic specification. 
 
 

oncurrent systems are characterized by their dedicated function, real-
time behavior, and high requirements on reliability and correctness. In 

order to devise systems with such features, the design process must be based 
upon a formal specification that captures the characteristics of concurrent 
systems. Many computational models have been proposed in the literature to 
specify such systems, including extensions to finite-state machines, data-
flow graphs, and communicating processes. Particularly, Petri nets (PNs) 
are interesting for the specification of this sort of systems: for instance, they 
may specify parallel as well as sequential activities and they easily capture 
non-deterministic behaviors. PNs have been extended in various ways to fit 
the most relevant aspects of concurrent systems. We can find several PN-
based models with different flavors in [2][3][4]. ECATNets [5][8][10] are 
high-level Petri nets model, in which tokens are algebraic terms [17] 
holding information. The important intrinsic features of ECATNets are their 
concurrency and asynchronous nature. These features together with their 
flexibility have stimulated their application in different areas [5][6][10]. 
However, the main weakness of classical ECATNets pointed out along the 
years, is the lack of modularity, forcing the system designer to cope with 
many details at the same time. In order to develop and analyze complex 
systems, the system developers need structuring and abstraction concepts 
that allow them to work with selected part of the specification without being 
distracted by the low-level details of remaining parts. Therefore, the use of 
techniques to build up compact specifications through the use of a “divide to 
conquer” strategy is nowadays, commonly accepted as necessary. Common 
techniques use different levels of abstraction enabling the construction of 
the specification in an incremental way. Consequently, for large and 
complex systems, an adequate specification formalism must deal with 
modularity concepts. To overcome these limitations of ECATNets, the 
CIRTA [24] language has recently been introduced as formalism for 
specifying complex and concurrent systems.  
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بناء تزايدي لشبكات بيتري ذات (سيرتا 
زز الشبكات هي لغة وصف تع) الحدود الجبرية

المتنافسة الموسعة ذات الحدود الجبرية بمفاهيم 
هذه . التركيب لتجعلها مهيئة للتطبيقات الواقعية

المقالة تدرس ميكانزمات البناء التركيبي التي 
توفرها لغة سيرتا لتصميم الأنظمة المتنافسة 

التقنية . هناك تقنيتان للبناء التركيبي. المعقدة
الوصف " وحدات" مالالأولى ترتكز على استع

التي توسع الشبكات المتنافسة الموسعة ذات 
العقد "و " العقد المشتركة"الحدود الجبرية بمفهومي

أما التقنية الثانية فتخص بعض عمليات ". المركبة
التركيب التي تطبق على وحدات الوصف و 

إعادة " و" التجميع"، "دالاستيرا:" نخص بالذكر
ي لكل وصف في لغة المعنى الرياض".  التسمية

سيرتا يستعمل هذه التقنيات هو معرف بإعطاء 
الشبكة المتنافسة الموسعة ذات الحدود الجبرية 

  .ةالمكافئ
 لغة الوصف، شبكات بيتري، :الكلمات المفتاحية

الشبكات المتنافسة الموسعة ذات الحدود الجبرية، 
  .الوصف الجبري

 ملخص
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X 
t1  

t3 

p4 :datap3 : data 

p2 :data 

p1 :data 

a 

It extends ECATNets with module concept and 
structuring operations so that large systems can be specified 
and understood stepwisely.  The design of complex systems 
may thus be reduced to the design of simpler and more 
manageable modules. In this paper, we provide a formal 
definition of CIRTA modules, and we precise the formal 
semantics for each structuring mechanism by giving the 
equivalent (not modular) ECATNet.   
 
• Paper organization 

The remainder of this paper is organized as follows. 
Section.2 gives an overview of ECATNets. Section.3 shows 
how ECATNets are extended by the concept of CIRTA 
module. Section.4 defines the syntax and the semantics of 
some structuring operations on CIRTA modules. In 
Section.5, an example of specification is presented to 
illustrate the use of CIRTA language. Section.6 proposes an 
approach to translate CIRTA specifications into rewriting 
theories to allow formal analysis of complex concurrent 
systems. Some concluding remarks are set in Section.7. 
 
AN OVERVIEW OF ECATNETS 

ECATNets are High-Level nets [6][10][8][5] devoted to 
modeling non-deterministic and concurrent systems. They 
allow to describe complex systems, using Petri nets [2][19] 
to model synchronization constraints and abstract data types 
[17] for specifying the data structures. 
 
Definition 

An ECATNet is a pair Ε =(Σpec, Ν)  where  Σpec = 
(Σ,E)   is an algebraic specification and   
     Ν = (P, T, σ, Cap, IC, DT, CT, TC, M)    is a net such 
that:  

• Σ=(S, Op)     where S is a set of sorts and Op is a set 
of operations. 

• E: is a set of Σ-equations. 
• P: a finite set of places. 
• T: a finite set of transitions P∩T=∅. 
• σ: P →S is a map which associates a sort to each 
place. 

• Cap :P → -{0} is the place capacity function. 
• IC : PxT → mT∑(V) ∪{~α / α∈mT∑ (V)}∪{empty} 
is the Input Condition function.  

          (  mTΣ(V) denotes the set of ∑-terms multisets 
with variables in V) 
• DT : PxT → mT∑ (V) ∪ { ∀} specifies  the  
Destroyed Tokens. 

• CT : PxT →mT∑(V)     is a function defining the 
Created Tokens. 

• TC :T→ T∑,bool (V)        is the Transition Condition. 
              (T∑,bool (V) is the set of ∑-terms  of sort bool using 
variables in V) 

• M : P → mT∑ (∅)   is a marking of the net , such 
that: 

                  ∀p∈ P  ( M(p) ∈ mT∑,s (∅)) ∧ (σ(p)=s)∧ 
(|M(p)|  ≤ Cap(p)) 
 

The graphical representation of a generic net Ν  is given 
in Figure 1, where p:s,n  denotes a place p of sort s and 
capacity n (we note p:s  a place p  with infinite capacity ). 
It should be noted that for notation convenience, we omit 
DT(p,t) (or CT(p,t)) in the graphical representation of  the 
net  when IC(p,t)=DT(p,t). 
 
 

 
 
 

Figure1:  A generic representation of an ECATNet. 
 
At any time, a transition t is enabled to fire in making 

M, when various conditions are simultaneously true. The 
first condition is that every IC(p,t) for each input place p is 
enabled (as shown in Figure 2). The second condition is 
that the transition condition TC(t) is true. Finally the 
addition of CT(p’,t) to each output place p’ must not result 
in p’ exceeding its capacity when this capacity is finite. 
When t is fired, DT(p,t) is removed from the input place p 
and simultaneously CT(p’,t) is added to the output place p’. 
   

IC(p,t) Enabling conditions 
IC(p,t)=α where α∈ mT∑(V) α ⊆M(p) 

IC(p,t)=~α  where α∈ mT∑(V) not (α ⊆ M(p)) 
IC(p,t)= empty M(p)= ∅ 

 
DT(p,t) Destroyed tokens 

DT(p,t)=α where α∈mT∑(V) M(p):= M(p)-α 

DT(p,t)= ∀ M(p) := ∅ 

 
Figur.2:   Input conditions and destroyed tokens. 
 
Example  

Figure 3 shows a simple example used to illustrate the 
main characteristics of ECATNets.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3:   An ECATNet example. 

 
The tokens in the net are of sort data. The algebraic 

specification of this sort is given by defining two constants 
(a and b) and an unary operation f which semantics is given 
by two equations (f(a)= b  and  f(b)=a). The Places of the 
ECATNet, drawn as circles or ellipses, represent the 

TC (t) M(p’) M(p) 
IC(p,t) 

DT(p,t) 

CT(p’,t) 
p : s,n p’ : s’,n’ t 

Spec Ε0 is 
    sort data 
    op  a :→data 
    op  b :→data 
    op  f(_) :data→data 
     vars X,Y : data 
     eq   f(a)=b 
     eq   f(b)=a 
 
end 
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possible states of the data. The actions performed by this 
system are indicated by means of rectangles called 
transitions. Places and transitions are connected by directed 
arcs, which are annotated by algebraic terms. In the initial 
state only transition t1 is enabled (may fire). When t1 fires, 
the token a (X=a) is removed from place p1 and 
simultaneously two tokens b (f(X)=b) are added to p2. 
Hence transitions t2 and t3 becomes enabled. In commonly 
known algebraic nets, only  one transition in this case is 
arbitrary selected and fired; while in ECATNets, 
concurrent as well as sequential firing are possible. Hence 
after the firing of t1 in the example of Figure.3,  we can 
have one of the following execution sequences:   t1;t2   t2;t1    
t1;t1    t2;t2    t1//t2    t1//t1    t2//t2    (where ti;tj denotes the 
sequential  execution of ti  and tj , and      ti//tj  is the 
concurrent firing of  ti  and tj ).  

 
CIRTA MODULE 

The modularity mechanism is defined in the “common” 
way used by top-down and bottom-up approaches, 
supporting refinements and abstractions, and it is based on 
the concept of module.  In CIRTA language, a module is 
stored in a page. Every page may be used several times in 
the same specification. The pages with references to a given 
module M are referred as super-page (upper-level pages) of 
M, while the pages contained in the module M are referred 
as sub-pages (lower-level pages). 
Intuitively, a CIRTA module contains three types of nodes 
(a node is either a place or a transition): composed nodes, 
elementary interface nodes and elementary non-interface 
nodes. Distinctive graphical notations are used for the 
representation of each type of nodes as shown in Figure4.  
 

 Place Transition  

Elementary  non-interface nodes   

Elementary interface nodes    

Composed  nodes   

 
Figure 4: Graphical representation of nodes in CIRTA modules. 
                                                                                     
• Elementary non-interface nodes 

An elementary non-interface node is an ordinary place 
or transition as commonly known in the Petri nets 
formalism. These nodes are private to the module in which 
they are declared, and consequently they are not accessible 
to other modules.  
• Elementary interface nodes 

Informally, interface nodes in a CIRTA module is a set 
of places and/or transitions which are shared with other 
modules. The intuitive idea behind sharing places is to 
allow the user to specify that all instances of an interface 
place are considered to be identical, i.e., they all represent a 
single place even though they are drawn as individual 
places in different modules. This means that they have the 
same initial marking and when a token is added/removed 
to/from one instance of this place, an identical token has to 

be added/removed to/from all other instances of it. 
Similarly, all instances of an interface transition have to be 
seen as representing one indivisible action. Each instance of 
an interface transition describes a part of a more complex 
action and all parts must occur together. An interface 
transition is enabled if all its instances in all modules are 
enabled. The change produced by the firing of an interface 
transition is the sum of changes produced by all its 
instances. For simplicity, each interface node is considered 
having the same name in all modules. 
  
• Composed nodes 

The composed nodes allow the user to relate a node to a 
more complex module which usually gives a more precise 
and detailed description of the activity represented by the 
composed node. The idea is analogous to the hierarchy 
constructs found in many graphical description languages 
(such data flow diagrams). At one level, we want to give a 
simple description of the specified system without having 
to consider internal details about how it is carried out. At 
another level, we want to specify the more detailed 
behavior. Every composed-node has an associated sub-
page. However, the places connected to a composed-
transition exist only at the super-page level; the places 
presented at the sub-page will be merged with the 
associated places at the super-page. As far as one 
composed-transition can not be executed like an ordinary 
transition and also that a composed-place cannot be 
considered as an ordinary place (which means that it cannot 
hold a marking), they act just as a graphical modeling 
convenience enabling the designer to structure the graphical 
model in an expressive way.  
 
Definition 

A  CIRTA module is a tuple    M =(Σpec, Ν, Pageset, π, 
δ) where  Σpec = (Σ, E)   is an algebraic specification    and      
Ν = (P, T, τ, σ, Cap, IC, DT, CT, TC, M)  Such that: 
• Σ=(S, Op)     where S is a set of sorts and Op is a 
set of operations. 
• E: is a set of Σ-equations. 
• P: a finite set of places. 
• T: a finite set of transitions P∩T=∅. 
• τ: P∪T→{e, c, i} is a map which associates a type 
for each node of the net: 

 τ(n) = e if n is an elementary non-interface node. 
 τ(n) = c if n is a composed node. 
 τ(n) = i if n is an elementary interface node. 

• σ: {p ∈P/τ(p) ≠c}→S  is a map which associates a 
sort to each no-composed place. 
• Cap : {p ∈P/τ(p) ≠c} → -{0} is the place 
capacity function. 
• IC : PxT →  mT∑(V)  ∪ {~α/ α ∈ mT∑ (V)} 
∪{empty} is the Input Condition.  
• DT : PxT → mT∑ (V) ∪ { ∀} is the Destroyed 
Tokens. 
• CT : PxT →mT∑(V)     Created Tokens. 
• TC : {t ∈T/τ(p) ≠c}→ T∑,bool (V) Transition Condition.  
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• M : {p ∈P/τ(p) ≠c}  → mT∑ (∅)   is a marking of the net, 
such that: ∀p∈{p ∈P/τ(p) ≠c} ( M(p) ∈ mT∑,s (∅)) ∧ 
(σ(p)=s)∧ (|M(p)|  ≤ Cap(p)) 
• Pageset: is a finite set of pages (the sub-pages of  M  ) 
• π: {n ∈P∪T/τ(n) =c} → Pageset is the map of page 
assignment.  
• δ: {n ∈P∪T / τ(n) =c}→ Br is a port assignment 
function. It is defined from composed  nodes into binary 
relations such that δ(n)  ⊆  •n• x Node(π(n)) (where •n• 
denotes adjacent nodes of n, and Node(M ) is the set of 
nodes in module M )) 
 
Example 

For instance, let us consider the CIRTA module M1  of 
Figure 5.  M1 has two elementary interface places p1 and p3 
which are shared with other modules. Apart from t1 which 
is a composed transition, all other nodes are elementary 
non-interface nodes. The part M2 in Figure 6 is a sub-page 
describing the refinement of the composed transition t1, the 
functions τ, π and δ are defined by: 
τ(p1)=τ(p3)=i, τ(t1)=c,  τ(t2)=τ(t3) =τ(p2)=τ(p4)=e, Pageset 
={ M 2},  π(t1)= M 2  δ(t1)={(p1,p1’), (p2, p2’)} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5:  An example of CIRTA  module M 1 . 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 6:  A sub-page of the CIRTA module M1. 
 

 

Dynamic Semantics  of a CIRTA module 

The behavior of a CIRTA module is defined here by 
giving the behavioral equivalent ECATNet. Therefore 
composed-nodes must be substituted by the associated sub-
pages. Each such substitution is a step refinement in the 
CIRTA specification.  The following steps compose the 
merging process of the sub-page into the super-page: 
 
• References of places and transitions used by the sub-
page will be eventually changed in order to produce unique 
labels; 
• One copy of each  sub-page is inserted at the super-
page; the composed-node is removed; 
• The arcs connected with a composed-place are 
connected to the referred boundary place; for arcs 
connected with a composed-transition, void boundary 
places of the sub-page are merged with the associated 
places at the super-page (arcs and associated arc 
inscriptions in the sub-page are kept). 
• The interface of the sub-page is composed by a set of 
boundary places or transitions. This set of nodes will 
constitute the glued points between the sub-page and the 
super-page, besides the common interface nodes.  

Given the CIRTA module M1 of Figure.5; we can 
construct the equivalent ECATNet Ε1 illustrated in 
Figure7.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7:  Equivalent ECATNet of the CIRTA module M1. 
 
STRUCTURING OPERATIONS ON CIRTA 
MODULES 
Importing modules 

A CIRTA module can import an other CIRTA module 
in order to enrich the algebraic specification (with new 
sorts, operations, and axioms), and/or to extend the net 
(with new places, transitions, and arcs).  The syntax of 
module importation is   
 

Spec M 1  is 
    Use M 2 
     op    f(_) :data→data 
     vars X,Y : data 
     eq   f(a)=b 
     eq   f(b)=a 
end 

t1 : M 2 p1→p1’ 
p2→p2’ 

X 
t2  

Y 

X f(Y) 

t3 

p4 :datap3 : data 

p2 :data

p1 :data 

a 

Spec M2 is 
     sort data 
     op  a :→data 
     op  b :→data 
     op h(_): data→data 
     op  g(_,_) :data data →data 
     vars X,Y : data 
     eq   g(X,X)=h(X) 
     eq   g(a, b)=b 
     eq   g(b, a)=a 
     eq   h(a)=b 
     eq   h(b)=a 
end 

Y 

p2’ : data

h(X) 

g(X,Y) 

X 
X

X 
T

T’

p4’ : datap3’ : data 

p1’ : data

Spec Ε1  is 
    sort data 
    op  a :→data 
    op  b :→data 
    op  f(_) :data→data 
     op h(_):data→data 
    op  g(_,_) :data data →data      
    vars X,Y : data 
     eq   f(a)=b 
     eq   f(b)=a 
     eq   g(X,X)=h(X) 
     eq   g(a, b)=b 
     eq   g(b, a)=a 
     eq   h(a)=b 
     eq   h(b)=a 
 
end 

X 
Y 

p1 :data

g(X,Y) 

X 

a 

t2  
 

X f(Y)

t3 

p4 :data p3 : data 

p2 :data

T  

T’ 

h(X)

Y
X 

X 

p4’ : data p3’ : data 
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< importation> ::= use  <Mod> 
Where <Mod> is the identifier of the imported module and 
use is a CIRTA keyword. 

For instance, let M1 be the CIRTA module of Figure 5, 
the module M3 in Figure 8 imports M1, adds a new operation  
h(_,_) and extends the net of M1 as follows.  

 
 
 
 
 
 

 
 
 
 
 
Figure 8:  An example of module with use operation. 
 
M3 is equivalent to module M3

’ of  figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: An equivalent CIRTA module to M3 
 

Module composition 

An important module building operator is composition. 
It has the syntax 

 
 <composition>:: = make <Mod> =  <Mod1> + <Mod2> + 
…..+ <Modn> endm 

 
This structuring operation creates a new module <Mod> 

that combines all the information in its summands 
(<Mod1>, <Mod2>, …..,<Modn>).  

Formally, the composition of two modules M1 and M2  
(where for i=1 to 2,  Mi=(Σpeci, Νi,Pageseti,πi,δi) and Νi =( 
Pi, Ti, τi, σi, Capi, ICi, DTi, CTi, TCi, Mi)) is a module M 
such that: 
 M=(Σpec, Ν, Pageset, π, δ)         Ν =( P, T, τ, σ, Cap, IC, 
DT, CT, TC, M))     Σpec=(Σ,E) 
• Σ =Σ1 ∪Σ2 ,    E=E1∪E2 ,       P=P1∪P2,                  

T=T1∪T2 ,         Pageset= Pageset1∪Pageset2. 
• τ = τ1⊕τ3 ,      σ = σ1⊕σ2  ,    Cap =Cap1⊕Cap2 ,    

IC =IC1⊕IC2 ,   DT =DT1⊕DT2.   

• CT=CT1⊕CT2,   M=M1⊕M2,  π=π1⊕π2   ,   δ=δ1⊕δ2 ,    
TC(t)=TC1(t)∧TC2(t).  

Notation:   Let fi: Ai→Bi  be functions (i=1,..,n), we note 
f1⊕f2⊕…⊕fn the function defined   
                  by:        f1⊕f2⊕…⊕fn:  ∪i=1,n Ai →  ∪i=1,n Bi    ,    
where    f1⊕f2⊕…⊕fn (x)= fi(x) if x ∈Ai  
 
Module renaming 

The renaming of a module M allows to create a new 
module M’ by changing the notations used in M. The 
renaming operation   uses a set of mappings (also called 
renaming morphism), namely a sort mapping, an operator 
mapping, a place mapping and a transition mapping.  The 
syntax of renaming operation is: 
 
<renaming> ::= Make <Mod’> = <Mod>* <renaming   
                           morphism>  endm 
 
<renaming morphism>::=<sort mapping> <operator     
                                          mapping > 

                     <place mapping><tansition mapping> 
 
<sort mapping> ::=  {so <sort.identifier1> to  
                                   sort.indetifier2>} 
 
 <operator mapping>::=  {op <op.identifier1> to    
                                          <op.indetifier2>} 
           
<sort mapping> ::=  {pl <place.identifier1> to  
                                  <place.indetifier2>} 
 
 <sort mapping> ::=  {tr <tans.identifier1> to  
                                    <tans.indetifier2>} 
 

For example, we rename the CIRTA module M1 to get 
the new module M4 as follows. 
Make M4 = M1 *(so data to bool,   op f (_) to not (_),   tr  t3 
to inverse) endm 

The module designed by this specification is 
represented in figure 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Example of renamed module.  
 

Spec M 3 is 
     use M1 
     op  h(_,_) :data data→data 
end t4  

h(x,f(x)) 

X 

p :data

p2 :data 

X 

Spec M 3
’ is 

    use M2 
    sort data 
    op  f(_) :data→data  
    op  h(_,_) :data data→data 
    vars X,Y : data 
    eq   f(a)=b 
    eq   f(b)=a 
end 

p :data 

h(x,f(x)) 

X

t1 : M2 
p1→p1’ 
p2→p2’

X 
t2  

Y

f(Y) 

t3 

p4 :datap3 : data 

p2 :data

p1 :data 

a 

Spec M4  is 
    Use M2*( so data to bool) 
     op not(_) :bool→bool 
     vars X,Y : bool 
     eq   not(a)=b 
     eq   not(b)=a 
end 
 

t1: M2 
p1→p1’ 
p2→p2’

X 

t2  
Y 

 

X not(Y) 

 

inverse

p4 :boolp3 : bool 

p2 :bool

p1 :bool 

a 
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CASE STUDY 
In the aim to illustrate the use of structuring mechanism 

presented in the above sections, we present an example 
consisting of a simple ring network with four different sites.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Module PACK 
PACK describes the packages which are sent in the 

network. Each package contains four fields: n-field for the 
package number, se-field for the identity of the sender, re-
field for the identity of the receiver, and d-field for the data 
content of the package. In this module, we define only the 
data type by an algebraic specification which can be seen as 
a CIRTA module with an empty net. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The modules DATA NAT and SITE-ID used above are 

respectively the algebraic specifications of data, natural 
numbers and site identifiers. The algebraic specifications 
DATA and NAT are trivial. They are omitted here since the 
main principle of the ring network can be understood.  

 
 
 
 
 
 
 
 

 
The system description will contain a set of eight 

CIRTA modules. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Module NETWORK 
 The figure bellow shows a CIRTA module NETWORK   

which has four places and four composed transitions 
positioned in a ring.   

 
• Module SITE-ID 

This module contains the elements id1, id2, id3 and id4 
which are used to identify the individual sites of the 
network. 

 
 
 
 
 
 
 
 
 

• Module SITE    
In this example we can see that all four composed 

transitions of NETWORK share the same following CIRTA 
module SITE.  
The SITE module has three different transitions. Each 
occurrence of Make-pack creates a new package. The n-
field of the new package is determined by the token in the 
place Num. The se-field of the new package is the site 
identifier of the site. Finally the re-field and d-field are 
determined by variables r (which can take an arbitrary 
value from SITE-IDENT) and d.  

The created packages are handled by transition Send, 
which inspects the re-field of the package. This is done by 
means of the re(p) which denotes the re-field of p. When 
re-field indicates that the receiver is different from the 

Spec  PACK  is 
     Use DATA  NAT SITE-ID 
     Sort  pack  
     op   <_,_,_,_>: nat site-id site-id data → pack 
     op   re(_): pack →site-id 
     op   se(_): pack →site-id 
     op   da(_): pack→data 
     Vars  n: nat   s, r: site-id    d:data 
      eq    se(<n,s,r,d>)= s 
      eq    re(<n,s,r,d>)= r  
      eq    da(<n,s,r,d>)= d 
 
 end 

Spec SITE-ID  is 
    Sort site-id 
    Ops   id1:→ site-id 
              id2 :→ site-id 
              id3 :→ site-id 
              id4 :→ site-id 
end 

  
 
 
Spec  NETWORK is 

    use Pack  
    use  SITE1 
    use  SITE2  
    use  SITE3  
    use  SITE4  
     
end  

 
buf-3-to-4 →  in 
buf-4-to-1 →out 

buf-2-to-3 →  in 
buf-3-to-4 →out 

buf-1-to-2 →  in 
buf-2-to-3 →out 

buf-4-to-1 →  in 
buf-1-to-2 →out 

S3: SITE3  

S2: SITE2  

S4: SITE4  

S1: SITE1  
Buf-4-to-1: pack  

Buf-3-to-4: pack  

Buf-1-to-2 : pack  

Buf-2-to-3: pack   
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present site, the package is transferred to the place out and a 
copy of the package is put in the place S-ex (indicating that 
the package is sent to an external receiver).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Modules SITE1, SITE2, SITE3 and SITE4 
 Each site has the same behavior as SITE. The main 

difference concerns the identifier id of the site. Hence each 
module SITEi (i=1,..,4) can be obtained by renaming the 
module SITE as follows. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Otherwise the package is sent directly to the place R-int 
(indicating that the package is received from an internal 
sender). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The modular specification of the network given above is 

behaviorally equivalent to the ECATNet presented in 
Figuere 11: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Make-pack 

Send-ext 

Receive-int  

Receive-ext  

Send-int 

p 

R-int: pack 

out: pack 

n+1 n 

p 

p 

p 

p 

p 

p 

p 

p 

S-ex: pack 

B: pack 

R-ex: pack 

Num: nat 

In: pack [ re(p)=id] 

 

 [re(p)<>id] 

[re(p)=id] 

[re(p)<>id]

<n, id, r,d> 

Spec SITE is 
    use PACK 
    op    id:→ site-id     
end 

 
Make SITE1= SITE*(op id to id1) endm. 

 
Make SITE2= SITE*(op id to id2) endm. 

 
Make SITE3= SITE*(op id to id3) endm. 

 
Make SITE4= SITE*(op id to id4) endm. 
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Figure 11: The equivalent ECATNet of the module NETWORK 

 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Spec  NETWORK is
 
     use DATA  NAT  
     Sort  pack site-id 
     op   <_,_,_,_>: nat site-id site-id data → pack 
     op   re(_): pack →site-id 
     op   se(_): pack →site-id 
     op   da(_): pack→data 
     op   id1:→ site-id 
     op   id2 :→ site-id 
     op   id3 :→ site-id 
      op  id4 :→ site-id 
 
     Vars  n: nat   s, r: site-id    d:data 
      eq   se(<n,s,r,d>)= s 
      eq    re(<n,s,r,d>)= r  
      eq    da(<n,s,r,d>)= d 
 
 end 
 

receive-int2 

Make-pack2 
send-ext2 

send-int2 

receive-ext2 
Make-pack1 

send-int1 

send-ext1 

receive-ext1 

receive-int1 

receive-int3 

Make-pack3 
send-ext3 

send-int3 

receive-ext3 
Make-pack4 

send-int4 

send-ext4 

receive-ext4 

receive-int4 

Buf-4-to-1 :pack   

Buf-3-to-4 :pack  

Buf-1-to-2 :pack   

Buf-2-to-3 :pack  
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VERIFICATION OF CIRTA SPECIFICATION 
For the levels of complexity typical to concurrent 

systems, traditional validation techniques like simulation 
and testing are neither sufficient nor viable to verify their 
correctness.  

Formal methods are becoming an alternative to ensure 
the correctness of designs. In this section we present a 
systematic procedure to translate modular CIRTA 
specifications into rewriting theories.  

The advantages of using rewriting logic as a semantic 
framework for concurrency models has been amply 
demonstrated in [13][14]. Essentially, rewriting logic has a 
simple formalism, with only few rules of deduction. It 
supports user-definable logical connectives, which can be 
chosen to fit the problem at hand. Besides, it is intrinsically 
concurrent; and it is realizable in a wide spectrum of logical 
languages [9][7][15] supporting executable specifications. 
To verify the correctness of a concurrent system (specified 
using CIRTA language) we execute the following steps: 
 

• Step 1: We translate a CIRTA specification into an 
ECATNet as stated in definition Section 3.3 and 
Section.4. 

• Step 2: We generate a rewrite theory as detailed in 
[5][11]. Hence, the effect of transitions firing is 
expressed by rewrite rules which depend 
strongly on the form of the Input Conditions 
(IC), and Destroyed Tokens (DT). 

• Step 3: We use existing analysis tools [9][7][15] to 
check properties expressed as a rewriting logic 
formulas. 

 It should be noted that all the translation steps can 
be done automatically so that the designer is not concerned 
with this translation. 
  

CONCLUSION 

Our investigation has shown the advantages of using 
CIRTA; an ECATNets based language, for complex 
concurrent systems specification. CIRTA allows capturing 
relevant information characteristics of such systems. In our 
approach it is feasible to specify large systems as a set of 
comprehensible structured modules and, at the same time, 
the essential characteristics of the system may be captured 
by the model. Moreover we have also presented an example 
of a practical system specification, namely a ring in order to 
illustrate the modeling capabilities of CIRTA. To make 
easy the formal analysis step of concurrent systems 
specified using CIRTA, we have proposed an approach to 
translate CIRTA specifications into rewriting theories. 
Hence, we take advantages of practical tools developed in 
the rewriting logic framework. In future, we will use 
CIRTA to develop a formal approach to verification and 
transformation based synthesis of concurrent systems. 
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