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Résumé

Dans cet article, les vibrations de flexion d'un rotor multi-disques sont considérées. L'analyse est effectuée pour le rotor avec les
conditions aux limites appuyée-appuyée et appuyée-libre.

Celle-ci est faite dans le cas dissymétrique non amorti ou les vitesses critiques et les réponses aux forces synchrones et asynchrones

sont déterminées et comparées.

Mots clés : Vibrations, rotor dynamiques, rotor flexible, conditions aux limites, vitesses critiques.

Abstract

In this paper the flexural vibrations of a multi-disk rotor is considered. The analysis is made for the rotor when it is simply-
simply supported and when it is free-simply supported.

This is done for the asymmetric undamped case where critical speeds and responses to synchronous and asynchronous forces are
determined and compared.

Key words : Vibrations, rotordynamics, flexible rotor, boundary conditions, critical speed.
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Flexural vibration of a multi-disk rotor with different boundary conditions

1. INTRODUCTION

Rotating machinery, such as turbines, pumps, generators
and fans, play an important role in many different industries
where they are considered among the masterpieces in the
mechanisms [1,2]. Unfortunately, they are sources of
vibrations that involve the phenomena of the fatigue of their
materials as well as some bad comfort qualities, in addition
to the resonance phenomenon that leads to disasters if it is
not avoided. To ensure a good running it is, therefore,
necessary to get a precise knowledge of the vibratory
behavior of the rotating parts. The main point of the
problem lies in the determination of the critical speeds.

In a previous work [3,4], the study on the vibration
dynamic behavior of a flexible mono rotor in the case
where it is symmetric was considered. The model chosen
was of Lalanne and Ferraris [5] with different boundary
conditions. The obtained results led to markedly different
critical speeds and modes of vibration. In this work the
same method has been followed but in an asymmetric case
and for a rotor with different number of discs.

. EQUATIONS OF MOTION

The model of rotor considered in this work is
represented in figure 1. The study of its flexural vibrations
is made for the cases where it is simply-simply supported
and free-simply supported to see the effect of the boundary
conditions on the modes of vibration and the critical
rotating speeds. For a better comparison, the work is made
for the rotor when it is with just with one disc, with two
discs and with three discs.

The caracteristics of the rotor, with the positions of the
discs and bearings taken from the origin the inertial frame,
are given as folows:

Shaft: Length L=1.3 m, cross section radius r- 0.05m,
density p=7800kg/m?, Young’s modulus

E=2.10"'N/m? and Poisson’s coefficient v=0.3.

Discl: Inner radius r=0.05 m, outer radius r;=0.12 m,
thickness h;= 0.05m, density p=7800kg/m* and position
1,=0.45 m.

Disc2: Inner radius r=0.05 m, outer radius r,=0.20 m,
thickness h,=0.05 m, density p=7800kg/m3 and position
13=0.65 m.

Disc3: Inner radius r=0.05 m, outer radius r;=0.20 m,
thickness h3=0.06 m, density p=7800kg/m? and position 14=
0.85m.

Bearing (1): Position 1;=0.2 m, k=5 107 N/m and k=7 107
N/m.

Bearing (2): Position 1s=1.1 m, kw=510" N/m
k=7 107 N/m.

Mass imbalance (1): mp; = 8.8.107 kg and distance from the
shaft axis d;=0.12m.

Mass imbalance (2): mpy3)= 3.34.10* kg and distance from
the shaft axis d>=0. 20m.

From these data we obtain the physical quantities:

Shaft: Cross-section s=7.85.10°m? and diametral moment
of inertia I= 4.906.10°m*.

and
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Discl: Mass Mqi=14.57kg and moments of inertia Igx1=
14:1=0.06459kg m?, 14,1=0.123kgm>.

Disc2: Mass Mg=45.92kg and moments of inertia Igxo=
Laz= 0.497kgm?, 14,=0.9758kgm?.

Disc3: Mass Mg3=55.107kg and moments of inertia Igxs=
Idz3: 0.602kgm2, Idy3: 1.1 71kgm2.

Figure 1 : Considered Rotating Model

The analysis of the flexural vibrations of the rotor is
carried out by modeling based on the Rayleigh-Ritz method
which is characterized by the substitution by approximation
functions of the displacements u and w in the x and z
directions respectively:

u(y,t) = f(y)q; (0O=f(y) q (M

and
w(y, )=1(y)q, (D=1(y)q, 2

where q; and qq are the generalized independent coordinates
and f(y) is the displacement function which is taken for the
first mode of a beam in flexion with a constant cross-
section. It is given by:

For simply-simply supported case:

= I 3
f(y) Bl_smBnyJ 3)
where : Bl =m.
For free-simply supported case,

f(y)=B[sinB,y+ot, shB,y] (4)

i L

where: o, = sinp, and BnlL =3.9266.

shp, L

B is a constant (taken equal to 1).

Consequently the expressions of the kinetic and stain
energies (T and U) can be obtained.

The total kinetic energy of the system is:

T = Ts+ Ta+Ts ®)

Where T, Tq and Ty, are the kinetic energy of the shaft,
the masses unbalance and the discs respectively and which
are given by [3] :
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1T ., e 52.7006 4, — 0.8269 Q4 +86.21610°q, =9.789 10°Qsint
T, = 5 ps(q; +43 )_([f (y)dy 6) {52.7006&12 +0.8269 Qq, +99.4867 10°q, = 9.789 10°Q%cosQt
1 ¢ K . . (11)
+p1a; +a3)[ g* (v)dy —2p104,q, [ £ ydy - Rotor with two discs:
’ ’ 85.144, —2.91Q4, +86.216 10°q, =9.789 10° Qsin Ot
Ta=Ta1+Ta+Ta3 (7 {85.14&42 +2.91Q4, +99.4867 10°q, =9.789 10°Q*cosQt
(12)
with : - Rotor with three discs:
T, =Ty +Ty = 1 M, f2(1,)(@; +43) { 98.126, —14.076 Q4 +86.216 10°q, =3.7199 10°Q’sin 2t
2 98.1264, +14.076Q4, +99.4867 10°q, =3.7199 10° Q*cosQt
(13)

1 I 1 .
+-1d,,g°(1,)(@) +4,)+-1d,Q° - 1d,,g°(1,)4,9,9 o
2 2 In the simply-simply supported case,

- Rotor with one disc:

1 T 46.754§, —0.4793 Qq, + 43.358 10°q, = 9.3477 10°Q’sin Ot
T :Ttra_l_TrOt:_M f2 1 2+ 2 . q, . q, . q, =>. sin
L ()@ +43) 46.7544, +0.4793 Qd, +52.01510°q, = 9.3477 10° Q’cosQt
RTIEPRVERPES. ) 21 v , . (14)
+ 2 Id,g"(1,)q, +9;)+ 2 Id,,Q"-1d ,g°(1;)q,9,Q - Rotor with two discs:
and 111.0564 G, —35.6207 Qq, +43.358 10°q, = 9.3477 10°Q’sinQt
| 111.0564 4, +35.6207 Q4 +52.01510°q, =9.3477 10° Q*cosCx
t 2 $2 2
Ty :T523+T(1r‘3) :EMd3f (1)@ +93) (15)
1 ) - Rotor with three discs:
2 Y 2 2 .
+51dx3g (I,)(q; + Clz)+5 Id;Q" -1d ;g (1,)q,q,2 155.0624 , —37.0897 Qq, +43.35810%q, = 1.00174 10~ QsinOt
Toz ToitT () 155.0624 §, +37.0897 Qg +52.01510°q, =1.00174 10° QcosQt
b— 1bl b2
(16)
with Any of the above systems of equations can be put in the
form
_ ; .. mg, —aQq, +k,q, = CQ*sinOt (17)
T,, =m,,d,Qf(1,)(q, cos At —q, sin Qt) { M, +a0d, +k, g, = CO’cosOt
and
sz — mbzdzgf(14)(q1 cos Ot — q2 sin Qt) or in the matrix form:
The total strain energy is that of the shaft and it is [m 0}{% }L Q|:O —a}{q] }{kl 0 }[ql } _ CQZ|:Sithj|
giVCl’l by: 0 m|l g, a 0]q, 0 k,]|lq, cosQt
EI L (18)
_EBl s 2 2
Ua=—-(q + qz).([ b (y)dy (®) 3. NATURAL FREQUENCIES AND EIGENMODES
d*f (y) The natural frequencies are found by solving the
where: h(y)= 5 homogeneous system of equations (17) ie the system
dy without second member. Since this one is linear the
solutions have the following forms:
The total virtual work due to the stiffness of the bearings is:
Qi =A, cos(ot+¢,)
==k £2(1,)q,5q, -k,,£(1 —k £2(1,)q,5q, -k, £2(1 (19)
W of " (1)a,8q; -k, £7(1,)q,8q, =k £7(15)q,8q, -k ,£7( s)qz?((l)z) {qzh =A, cos(ot+¢,)
Following the procedure made by Lallane and Ferrari, These can be transformed in a complex form as:
the equations of motion are deducted using Lagrange q. =A, exp jot
equations for the dissymmetric model. —1h Zl ot (20)
q., =A,expjo
In the free-simply supported case, - ’
- Rotor with one disc: with A, = A, expj¢, and A, =A,expjo,.
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By substitution in the homogenous complex system we get:

mglh _aggzh + kl ﬂlh =0
mﬂzn + anlh +k2 (_:lzh =0

[ -

This represents a linear system of equations with two

unknown A, And

discussed for the
determinant =0.

2

Or in the matrix form

k, —mw?
jaQa

—jaQa

k, —mo’

A, with a parameter ® which is
non-trivial case that corresponds to

That is:
det=| k, —mw* —jaQa |=0 (23)
jaQa k, —mo’
or: mo-(kimt+tkm+a?Q®)?+kika=0 (24)

We remark that when Q = 0 (rotor at rest), the solutions
of the (24) are equal to:

®,, =/ K,/m (25)
and :
®,, = k,/m (26)

On the other hand when Q # 0 (rotating rotor), the bi-
squared equation has a positive discriminant which means
that it has two positive real values for o given by:

2042 22 )2
|0l @0 B el 0 2R L (27)
o, = + 2 + 2 ;05
2 2 2m 2 2 2m
and
) 2 202 ) > L2 2
o, = Do | D2 - O , Do . (28)
2 2 2m 2 2 2m
We can find that:
W) < @< Wy < O, (29)

There are then two modes of vibration for each of the
generalized coordinates qin and qon corresponding to the
two values ®; and w;,

i) For the first mode (@ = @1), we have:

A, _ _JjaQow, _  jaQo, (30)
A, k, _m(DIZ m(mlzo _(‘)12)
That gives: Aj1=Az and ©21= Q11 - /2
Hence :
Qi = Ay cos(ot+¢,,)
and
Qo = Ay cos(o t+d,,) = A sin(o t+¢,,)  (31)
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Then,
U(Y,1) =0, £(3) = A, cos(@, t+ §,,)|sin B, y +ct,shB,y
(32)
and
w(y,t) =q,, (y) =A, sin(®, t+ ¢, 1)[Sin B,y +a,shB, Y]
(33)
ii) For the second mode (® = ®2), we have:
An _ jaszz _ jazng = G4
A,, k—mo, m(®,—-)
That gives: Aip=Axn et ¢n= @2+ /2
Hence:
iy = A, cos(o,t+6¢,,)
and
Qony = Ay, c08(,t+0,,) =—A,sin(w,t+¢,)  (35)

Then,

Uy, t) = Qo f(y) = Ay, cos(@,t +¢,,)[sin B,y + ot shB, y] (36)

And

W30 = 4y f () = Ay cOS(@,1+ §olsin B,y + o1, shB, y] (37)
As A, is different from A,, the orbits described by the

rotor are ellipses with an inverse precession for the first
mode and a direct precession for second one.

4. CAMPBELL DIAGRAM

The characteristic equation for each considered case is
obtained from the corresponding system of equations (11)
to (16). It allows having the frequencies at rest and the
frequencies in rotation.

In Campbell Diagram (Figure 2 and Figure 3), the
functions m;=w(Q) et w2 = m(Q) are represented cut by
the straight lines ®=Q (the synchronous case) and @ = sQ
(an asynchronous case with s= 0.5) to get the intersection
points A and B for the first and, C and D for the second.

The values of the frequencies corresponding for these

points are obtained using ® = sQ in (24), that is:
s?(s’m? —a?)Q* —m(k, +k,)s’Q* +k,k, =0 (38)

From this we find the critical value Q. for the cases s=1
and s=0.5.

In the simply-simply supported case,
- Rotor with one disc :

®* —(20.398.10° +0.2297 Q%) +2.25510"° =0 (39)
®,,=4/k, /m=962.997 rd/s

and m,,=+k,/m=1057.763 rd/s (40)

o = \/10.199 10° +2.456 10°Q° —\/(10. 19910° +2.456 10°Q* | ~1.0317 10"
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0, = \/10.199.105 +2.456107°Q° +\/(1o.199 10°+2.456 10°Q2 f ~1.0317 10"

(40)
A: Q=958 rd/s ; B: QO =050.954 rd/s,
C: Q1=1812.974 rd/s ; D: Q:,=2192.32 rd/s.

- Rotor with two discs :

o' —(8.58710° +12.6810°Q*)w* +2.255 10"° =0 (42)

o=k, /m=624.831rd/s and o, =k /m=684.372 rd/s (43)

® = \/4.2938 10° +5.1438 107 Q" — \/(4.2938 10° +5.1438102Qf ~1.82810""

o, = \/4.2938 10° +5.14381072 Q) +\/(4.2938 10° +5.1438 10’2(22)2 -1.828 10"

(44)
2500 , ,
2000 |- P -
1500 |- 7
B D_-
1000 jgr—— — 2 e
A oy - C
i =22 8
i
EUIO lf]IIflr.‘I 1500 EDIE‘IF.‘I 2500
£2 (ri/'s)
Figure 2(a) : Rotor with one disc, simply-simply supported case
2500 T T T T
2000 =2
1500 &=
D o
N gl
1000 - = = -
| w=LY2
500 - -
A c o,
| L 1 1
500 1000 1500 2000 2500
€2 (rili's)
Figure 2(b) : Rotor with two discs, simply-simply supported case
2500
2000 |-
1500 -
1oon -
500
| ; | | I
S00 1000 1500 2000 2300
£2 (rd/s)
Figure 2(c) : Rotor with three discs, simply-simply supported
case
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A: Q1 =565.356rd/s ; B: Q»=798.5135 rd/s,
C: Q1=1017.45rd/s ; D: Q:,=2191.33rd/s.

- Rotor with three discs:
®* —(61.506 10" +13.756 10° Q*)®* +2.255.10° =0  (45)

0=k, /m=528.787 rd/s and 0, =+/k, /m=579.176 1d/s (46)

o = \/30.7531 10°+2.8610C2° 7\/(30.7531 10 +2.86107Q° f ~2.3449 10"

0, = \/30‘7531 10°+2.86107° Q2 +\/(30.7531 104 +2.86.10°0Q f ~2.3449 10"

47)
A: Q1=492.917 rd/s ; B: Q¢ =639.857 rd/s,
C: Q.1=906.314 rd/s ; D: Q. =1772.77rd/s.

2500
2000
1500
1000 |
500 -
w=£1/2
| 1 | 1 !
500 1000 1500 2000 2500

1 (rd/s)
Figure 3(a) : Rotor with one disc, free-simply supported case

2500 :
2000 -
1500 -
({elvly}
S0 . -
@=£1/2
I i I i —
S00 1000 1500 2000 2500
£2 (rd/s)

Figure 3(b) : Rotor with two discs, free-simply supported case

@=£21/2

2500
£2 (rd/s)

| 1 | I
s00 1000 1500 2000

Figure 3(¢) :

Rotor with three discs, free-simply supported case



Flexural vibration of a multi-disk rotor with different boundary conditions

In the free-simply supported case, equations (17) i.e the system with second member. For this

. . one, the solutions of the system may have the form:
- Rotor with one disc: > Y y

o' —(35.237 10° +2.4619 10 Q*)o” +3.0883 10" = 0 Qip = A cOS(Qt +0,,) 57)
(48) A,y = Ay cos(Q+ ;)

o, =k, /m=1279.0459 rd/s
and ®,,=+k, /m=1373.962 rd/s (49) They can be transformed in a complex form as:

=A, exp jQt
oal:\/35.237105+2.46210’4—\/(35.273105+2.46210’4QZ)2—3.08831012 4, = S OXPJ (58)

q,, = Ac exp jOt

o, =\/35.237 10°+2.46210 +(35.27310° + 2462100 -3.0883 10"
(50)  with: A, =A,expjd, and A, =A,expjd,,

A1 Qe =1278.036 rd/s ; B: Qe =1375.2168 rd/s, Their introduction in the inhomogeneous complex

C: Q1=2550.3034 rd/s ; D: Q¢ =2757.667 rd/s. system yields:
- Rotor with two discs: . . .

) . e . mg, —anzp +k191p =CQ% expj(Q—1/2) (59)
o —(21.8110° +1.168 10~ Q" )" +1.18327 10 (5=1()) mgzp _'_anlp +k2£12p = CQ? exp ()

or
o, =4k, /m=1006.299 rd/s
k,-mQ® —jaQ’ Ayl CQ? exp(—jn/2) (60)
®,,=+/k, /m=1080.975 rd/s (52) BQ* k,-mQ A, | co’

and 20 1 A,

o, =\/10,9057 10° +5.841 10*4_\/(10_9057 10° +5.841 10"‘02)2—1.18327 102 This last system of equations represents a linear system

with two unknowns A_ et A_, that depend on a

el

, :\/10.9057 10°+5.841107 +\/(10.9057 10°+5.84110*0°f ~1.18327 10" parameter Q. The determinant method gives:

53 2 —jn/2 0?2 »
(>3) e RO ok, -m02)e 2 4 aCQ!
A: Q1 =1002. 69 rd/s ; B: Qe =1085.49 rd/s, AL = cQ k,—mQ [k, —mO)(k, —m?) —a’02]
C: Q1 =1987. 43 rd/s ; D: Q2 =2194.46 rd/s. 0k, -mQ? - jaQ? : :
: 2 2
- Rotor with three discs: RBQ k, —mQ
o' —(21.8110° +1.168 10° Q% )o* +1.18327 10> =0 (54) - —JCQ%(k, —mQ? —aQ?) 61)
(¢, —mO?)(k, —mQ?) —a’Q?|
0, =k, /m=1006.299 rd/s . -
o R |- CO —m0?) ¢ pCote
and ®,,=+/k, /m=1080.975 rd/s (55)  An-r s o o i, —mQ*)(k, -mQ?) —220°]
- -

jaQ? k, —mQ?

o :J10.9057 10°+5.84110° —\/(10.9057 10°+5.84110 Q2 ~1.18327 10"

_ COQ(k, -mQ? —aQ?) ©2)
0, = \/10.9057 10°+5.84110°* +\/(10.9057 10°+5.841107*0)" f ~1.18327 10" l(k, —mQ*)(k, ~-mQ*) -a’Q’]

(56)  From these relations, we obtain:

A: Q1=900. 89 rd/s ; B: Q,,=1058. 6 rd/s, [k2 —(m +a)Qz ]CQ2
C: Q1 =1705. 27 rd/s; D: Q2=2311.056 rd/s. = D > P
(k, —mQ~ )k, —mQ~)—a Q)

and (63)
5. RESPONSE TO A SYNCHRONOUS FORCE |_k] —(m+ a)szQ2

e2 = 2 2 24
When considering the excitation force due to the mass- (k; —mQ7)(k, —-mQ7)-a’Q
unbalance, the steady state solution which is the particular

solution is found by solving the inhomogeneous system of ~ Als0 Per=-m2 and o2=0

61
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So we can write:

qip = Ae1sinQdt and  qop = A2 cosQt (64)

As A.i et A are different, the orbits described by the
rotor are ellipses. The expressions of the critical speeds
come from the denominator of the equation (62) when it is
equal to zero, that is:

(m® —a>)Q* —m(k, +k,)Q% +k,k, =0 (65)

We remark that this equation is similar to equation (38)
for the case where s = 1. The two critical speeds of rotation
correspond to the points A and B. However the sense of
precession is given by the product of the amplitudes.
Indeed, if Aci.Ae2 > 0 the precession is direct and if Aci.Ae
< 0 the precession is reverse.

In order to know the sign of Aci.Ae2, we have to know the
sign of the following function:

£(Q%) = [k, —(m+a)Q? ||k, —(m+a)Q*|  (©66)
It is equal to zero for the two values of Q:

Q,=/k [(m+a) and Q,=k,/(m+a)

These allow having the sense of the precession for each
value of the rotational speed (see figure 4).

A .i.Aez Ay lf-'xez

e M My
RN

Direct.
precession precession precession

Inverse
precession

Q] Q2
Figure 4 : Variation of the sense of the precession

a0

For the different cases of the considered model of rotor
defined by equations (11) to (16), we have:

In the simply-simply supported case,
- Rotor with one disc:
. 486,220 — 4.415.10* 0* |2 ’
“l 2185,706Q2* —44,59.10° Q% +2,255.10"°
405,297 - 4,415 10 Q% |0
@~ 2185,706Q* —44,59.10° Q* +2,255.10"°

(67)

- Rotor with two discs:
486,220 - 1,371.10° 0 |2
Ag= 24 102 15
110,646.10°Q* —1,059.10"° Q) +2,255.10
405,297 —1371.10° 02 |0
©110,646.10°Q* —1,059.10'°Q% +2,255.10"

e2
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- Rotor with three discs:
[521,055 - 1.9248 .10 02 2
Ay = PRy 102 5
22,668.10° Q" —1,4788.10"°Q” +2,255.10
[434.334 — 19248107 @ 02

>

A= (69)
22,668.10°Q* —1,4788.10'°Q2 +2,255.10"
In the free-simply supported case,
- Rotor with one disc:
073,875 —5.1786.10* @ |?
T 2703,810% —96,5765.10° Q7 +8,577.10"
- [843,968 —5,1786.10 Q* | (70)
“ 2703,810* —96,5765.10° Q% +8,577.10"°
- Rotor with two discs:
073,875 —8,619.10* 0 |
' 7240,3520* —1,581.10'°Q7 +8,577.10"°
[843.968 —8.619.100* | )
2 7240,3520* —1,581.10'°0Q2 +8,577.10"°
- Rotor with three discs:
[3700,8 - 4.1738.10 Q|2
T 9430,576Q% —1,822.10°Q2 +8,577.10"°
-3 2 2
[3207.149 —41738.10° Q| 2)

A =
27 9430,576Q" —1,822.10'°Q7 +8,577.10"°

Ae; and Ae; are represented in absolute values on figure
5 and figure 6, where we see that the phenomenon of
resonance occurs for two critical values unlike the
symmetric case where it occurs for a single value. On the
other hand, when €2>> 0 (very positive), the amplitudes
A et Ae» will be equal and tend to a constant value equals
to: 9.8338 10'm.

6. REPONSE TO AN ASYNCHRONOUS FORCE

The rotor can also be excited by an
asynchronous force during its operation. It is a
force with a constant amplitude Fo and speeds sQ2
different from that of the rotor. If the force is
applied in 13 we have:

E, =F f(1;)sin sQt = Fsin sQt

and F,, = F,f(l;)cossQt = FcossOt (73)
The equations to be resolved will be :
mq, —aQq, +k,q, = FsinsQt (74)
(68) mq, +aQq, +k,q, = FcossQt
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i [
e , . . . -
3 i
15T 5
3+ o
L&F .
1 - -
M b= e
0 - ;
a1} Lic) 0D L] 100 1284 1408 1120
1 i)
01, = D62.48 nls 11, = 10553 rliy

Figure 5(a) : Response to a synchronous force: rotor with one
disc, simply-simply supported case
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Figure 5(b) : Response to a synchronous force: rotor with two
discs, simply-simply supported case
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Figure 5(c) : Response to a synchronous force: rotor with three
discs, simply-simply supported case
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As the precedent case, the solutions are of the form:
[k,— (ms>+ as)Q* |F
Ag =53 5 o 2 2
s“(s'm”"—a”)Q"—ms” (k,+k,)Q°+k k,
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And (75)
[k, — (mh?* +as)Q* |F
A =
e2 2 2 2 2 4 2 2
s*(s'm"—a”")Q"-ms"(k, +k,)Q"+k k,
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Figure 6(a) : Response to a synchronous force: rotor with
one disc, free-simply supported case.
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Figure 6(b) : Response to a synchronous force: rotor with two
discs free-simply supported case.
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Figure 6(c) : Response to a synchronous force: rotor with three
discs free-simply supported case.
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The critical speeds are given by the same equation (38) and
the orbits are described by ellipses.
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d4, = A cos(sQt +¢,)

(76)
Qop = Ay cos(sQt +¢.,)
The calculations lead us to:
In the simply-simply supported case,
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Figure 7(a) : Response to an asynchronous force: rotor with one
disc simply-simply supported case.
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Figure 7(b) : Response to an asynchronous force: rotor with two
discs simply-simply supported case.

23108

1.8
1|
[ “‘*-ul.-i.eﬂ
144+
1.2}

17
I].!l!
06+
[P

01t

[ Ay

N

y

L

00 #1000 1500 o 2000 2000
€2, =006.31 /s £2,=1530143 rdis 0 {rdis)
Figure 7(c) : Response to an asynchronous force: rotor with three
discs simply-simply supported case.
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- Rotor with one disc:
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(43,358.10° —11,928 Q*)F

>

A= (77)

2 136,5636 Q% —11,147.10°Q2 15

, —11,147. +2,255.10
- Rotor with two discs:
B (52,015.10° — 45,574 QO*)F

" 453,636 Q° —26,479.10°Q% +2,255.10"°
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Figure 8(a) : Response to an asynchronous force: rotor with one
disc free-simply supported case.
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Figure 8(b) : Response to an asynchronous force: rotor with two
discs free-simply supported case.
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Figure 8(c) : Response to an asynchronous force: rotor with three

discs free-simply supported case.
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(43,358.10° — 45,574 O*)F

A= - s NG
453,636 Q° —26,479.10°QQ° +2,255.10
- Rotor with three discs:
A - (52,015.10° —57,31Q°)F
e 1158,860* —36,9719.10°Q* +2,255.10"°
43.358.10° —57,31Q%)F
Ap= ( 4 8?2 ) 15 (79)
1158,86Q2" —36,9719.10°Q2" +2,255.10
In the free-simply supported case,
- Rotor with one disc:
A= (99,4867.10° —13,5880*)F
7 173,4136Q° —24,466.10°Q° +8,577.10"°
86,216.10° —13,588Q*)F
Ac2: ( 4 S ~2 ) 5 (80)
173,4136 Q0" —24,466.10°Q" +8,577.10
- Rotor with two discs:
A = (99,4867.10° —22,74Q°)F
e 450,9340* —39,5268.10°Q* +8,577.10"
(86,216.10° —22,74Q*)F
Ao= . i NG
450,9340" —39,5268.10°Q° +8,577.10
- Rotor with three discs:
B (99,4867.10° —31,5690°)F
' 552.2610Q% —45,555.10°Q% +8,577.10"°
86,216.10° —31,5690Q%)F
(86, 5690°) -

= 552,261Q* —45,555.10° Q% +8,577.10"

The amplitudes A1 and A for F=1N, are represented
in figures (7, 8) where the critical speeds are the speeds that
12.
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make the magnitude infinite and the denominator of a zero
value.

CONCLUSION

In this work we have investigated the effect of the
change in the boundary conditions on the vibration
behavior of flexible rotor. The supported-free case is
examined and compared with the supported-supported case
of Lalanne and Ferrari.

On the one hand the results obtained by the Campbell
diagram showed a net difference of critical speeds for these
two cases.

On the other hand forces synchronous and asynchronous
responses have given separate curves where you notice for
the supported-free case of frequencies of overtones than
those of the cases supported-supported.

It gives the possibility to work with greater speeds. Also
it may be noted that playing on the boundaries conditions to
allow avoiding the critical speeds for a given rotational
speed and without changing the rotor structure.
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