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Résumé   

Dans cet article, les vibrations de flexion d'un rotor multi-disques sont considérées. L'analyse est effectuée pour le rotor avec les 

conditions aux limites appuyée-appuyée et appuyée-libre.  

Celle-ci est faite dans le cas dissymétrique non amorti où les vitesses critiques et les réponses aux forces synchrones et asynchrones 

sont déterminées et comparées. 
 

Mots clés : Vibrations, rotor dynamiques, rotor flexible, conditions aux limites, vitesses critiques. 
 

 

 

Abstract  

In this paper the flexural vibrations of a multi-disk rotor is considered. The analysis is made for the rotor when it is simply-

simply supported and when it is free-simply supported.  

This is done for the asymmetric undamped case where critical speeds and responses to synchronous and asynchronous forces are 

determined and compared.  
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  ملخص
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1. INTRODUCTION 

Rotating machinery, such as turbines, pumps, generators 

and fans, play an important role in many different industries 

where they are considered among the masterpieces in the 

mechanisms [1,2]. Unfortunately, they are sources of 

vibrations that involve the phenomena of the fatigue of their 

materials as well as some bad comfort qualities, in addition 

to the resonance phenomenon that leads to disasters if it is 

not avoided. To ensure a good running it is, therefore, 

necessary to get a precise knowledge of the vibratory 

behavior of the rotating parts. The main point of the 

problem lies in the determination of the critical speeds. 

In a previous work [3,4], the study on the vibration 

dynamic behavior of a flexible mono rotor in the case 

where it is symmetric was considered. The model chosen 

was of Lalanne and Ferraris [5] with different boundary 

conditions. The obtained results led to markedly different 

critical speeds and modes of vibration. In this work the 

same method has been followed but in an asymmetric case 

and for a rotor with different number of discs. 

 

2. EQUATIONS OF MOTION 
 

The model of rotor considered in this work is 

represented in figure 1.  The study of its flexural vibrations 

is made for the cases where it is simply-simply supported 

and free-simply supported to see the effect of the boundary 

conditions on the modes of vibration and the critical 

rotating speeds. For a better comparison, the work is made 

for the rotor when it is with just with one disc, with two 

discs and with three discs.  

The caracteristics of the rotor, with the positions of the 

discs and bearings taken from the origin the inertial frame, 

are given as folows: 

Shaft: Length L=1.3 m, cross section radius r= 0.05m, 

density =7800kg/m3, Young’s modulus  

E=2.1011N/m2 and Poisson’s coefficient =0.3. 

Disc1: Inner radius r=0.05 m, outer radius r1=0.12 m, 

thickness h1= 0.05m, density =7800kg/m3 and position 

l2=0.45 m. 

Disc2: Inner radius r=0.05 m, outer radius r2=0.20 m, 

thickness h2=0.05 m, density =7800kg/m3 and position 

l3=0.65 m. 

Disc3: Inner radius r=0.05 m, outer radius r3=0.20 m, 

thickness h3=0.06 m, density =7800kg/m3 and position l4= 

0.85m. 

Bearing (1): Position l1=0.2 m, kxx=5 107 N/m and kzz=7 107 

N/m. 

Bearing (2): Position l5=1.1 m, kxx=5 107 N/m  and 

kzz=7 107 N/m. 

Mass imbalance (1): mb1 = 8.8.10-5 kg and distance from the 

shaft axis d1=0.12m. 

Mass imbalance (2): mb2(3)= 3.34.10-4 kg and distance from 

the shaft axis d2=0. 20m.  

From these data we obtain the physical quantities: 

Shaft: Cross-section s=7.85.10-3m2 and diametral moment 

of inertia I= 4.906.10-6m4. 

Disc1: Mass Md1=14.57kg and moments of inertia Idx1= 

Idz1=0.06459kg m2, Idy1=0.123kgm2. 

Disc2: Mass Md2=45.92kg and moments of inertia Idx2= 

Idz2= 0.497kgm2, Idy2=0.9758kgm2. 

Disc3: Mass Md3=55.107kg and moments of inertia Idx3= 

Idz3= 0.602kgm2, Idy3=1.171kgm2. 

 

 

  

 

 

 

 

 

 

Figure 1 : Considered Rotating Model 

 

The analysis of the flexural vibrations of the rotor is 

carried out by modeling based on the Rayleigh-Ritz method 

which is characterized by the substitution by approximation 

functions of the displacements u and w in the x and z 

directions respectively:  

11 q)y(f)t(q)y(f)t,y(u         (1) 

and                     

22 q)y(f)t(q)y(f)t,y(w          (2) 

where q1 and q2 are the generalized independent coordinates 

and f(y) is the displacement function which is taken for the 

first mode of a beam in flexion with a constant cross-

section. It is given by: 

For simply-simply supported case:      

 y
n

sinB)y(f 
      

  (3) 

where  : nL = .  

 

For free-simply supported case,  

      
 yshysinB)y(f nnn 

      
(4) 

where: 
Lsh

Lsin

n

n
n




  and   nL = 3.9266.  

B is a constant (taken equal to 1). 

Consequently the expressions of the kinetic and stain 

energies (T and U) can be obtained. 

The total kinetic energy of the system is: 

T = Ts + Td +Tb          (5) 

 

Where Ts, Td and Tb are the kinetic energy of the shaft, 

the masses unbalance and the discs respectively and which 

are given by [3] : 
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ydygqqI2dy)y(g)qq(I
2
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Td = Td1+Td2+Td3                                     (7) 
 

with : 





212

2

1y

2

1y

2

2

2

12

2

1x

2

2

2

12

2

1d

rot

1d

tra

1d1d

qq)l(gIdId
2

1
)qq)(l(gId

2

1

)qq)(l(fM
2

1
TTT





 

 


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and  
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

214

2

3y

2

3y

2

2

2

14

2

3x

2

2

2

14

2

3d

rot

3d

tra

3d3d

qq)l(gIdId
2

1
)qq)(l(gId

2

1

)qq)(l(fM
2

1
TTT





  

         Tb= Tb1+Tb2                                          (8) 

 

with    

 

)tsinqtcosq)(l(fdmT 21211b1b      

and   

)tsinqtcosq)(l(fdmT 21422b2b     

The total strain energy is that of the shaft and it is 

given by: 

 

dy)y(h)qq(
2

EI
Ua

L

0

22

2

2

1 

           

(9) 

where: 2

2

dy

)y(fd
)y(h          

The total virtual work due to the stiffness of the bearings is: 

225

2

zz115

2

xx221

2

zz111

2

xx qq)l(fk-q)q(lfkqq)l(fk-q)q(lfkδW 
 

 (10)
 

Following the procedure made by Lallane and Ferrari, 

the equations of motion are deducted using Lagrange 

equations for the dissymmetric model. 

In the free-simply supported case,  

- Rotor with one disc:  











tcosΩ10 9.789q10 4867.99qΩ 0.8269q52.7006

tsinΩ10 9.789q10 216.68qΩ 0.8269q52.7006
26

2

6

12

2-6

1

6

21





 (11)                                                

- Rotor with two discs:  









tcosΩ10 9.789q10 4867.99qΩ 2.91q85.14 

tsinΩ10 9.789q10 216.68qΩ 2.91q85.14
26-

2

6

12

2-6

1

6

21





 
(12)                                               

 - Rotor with three discs:  









tcosΩ10 3.7199q10 4867.99q076Ω.41q98.126 

tsinΩ10 3.7199q10 216.68qΩ 076.41q98.126
25-

2

6

12

2-5

1

6

21



  

(13)                                                

In the simply-simply supported case, 

- Rotor with one disc: 









tcosΩ10 9.3477q10 015.52qΩ 0.4793q46.754

tsinΩ10 9.3477q10 358.43qΩ 0.4793q46.754
26-

2

6

12

2-6

1

6

21



  

(14)                                                       

- Rotor with two discs:  









tcosΩ10 9.3477q10 015.52qΩ 6207.53q111.0564 

tsinΩ10 9.3477q10 358.43qΩ 6207.53q111.0564
26-

2

6
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1

6
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
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(15)                                               

 - Rotor with three discs:  









tcosΩ10 1.00174q10 015.52qΩ 0897.73q155.0624 

tsinΩ10 1.00174q10 358.43qΩ 0897.73q155.0624
25-

2

6

12

2-5

1

6

21





 

(16)                                                

Any of the above systems of equations can be put in the 

form                      











tcosΩCqkqΩaqm

tsinΩCqkqΩaqm
2

2212

2

1121





     

(17)                                                                                    

or in the matrix form: 



















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




















 


















tcosΩ

tsinΩ
CΩ

q

q

k0

0k

q

q

0a

a0
Ω

q

q

m0

0m
2

2

1

2

1

2

1

2

1









 (18) 

   

3. NATURAL FREQUENCIES AND EIGENMODES 
 

The natural frequencies are found by solving the 

homogeneous system of equations (17) i.e the system 

without second member. Since this one is linear the 

solutions have the following forms: 









)tcos(Aq

)tcos(Aq

22h2

11h1                 (19) 

These can be transformed in a complex form as: 

  










tjexpAq

tjexpAq

2h2

1h1

    

  (20)  

with 111 jexpAA    and  222 jexpAA  . 
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By substitution in the homogenous complex system we get: 

           










0qkqaΩqm

0qkqaΩqm
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1h12h1h


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Or in the matrix form   



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
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2
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(22)          

This represents a linear system of equations with two 

unknown 1A And
 2A  with a parameter   which is 

discussed for the non-trivial case that corresponds to 

determinant =0. 

That is:  

  det =
















2

2

2

1

mωkjaΩa

jaΩamωk = 0     (23) 

or  :       m2 4 - (k1 m + k2 m + a2 2 ) 2 + k1 k2 = 0      (24) 

We remark that when  = 0 (rotor at rest), the solutions 

of the (24) are equal to: 

    
/mkω 110         (25) 

 and : 

    /mkω 220        
(26) 

On the other hand when   0 (rotating rotor), the bi-

squared equation has a positive discriminant which means 

that it has two positive real values for  given by: 
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   (27)     

and               

2
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a
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 (28) 

We can find that: 

      1 < 
10 < 

20  < 2        (29) 

There are then two modes of vibration for each of the 

generalized coordinates q1h and q2h corresponding to the 

two values 1 and 2.  

i) For the first mode ( = 1), we have: 

j
)(m

aj

mk

aj

A

A
2

1

2

10

1

2

11

1

21

11 










     

(30) 

That gives:  A11 = A21     and           21 = 11 - /2         

Hence  : 

)tcos(Aq 111111h1 
 

and             
 

        
)tsin(A)tcos(Aq 11111211211h2 

    
(31) 

Then, 

 yshysin)tcos(A)y(fq)t,y(u nnn111111h1 
 

 (32)   

and 

 yshysin)tsin(A)y(fq)t,y(w nnn111111h2 

 (33) 

ii) For the second mode ( = 2), we have: 

           

j
)(m

aj

mk

aj

A

A
2

21

2

0

2

2
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2

22

12 










  

   (34) 

That gives:  A12=A22  et 22= 12 +  /2  

Hence: 

)tcos(Aq 122122h1   

and                                                                                   

)tsin(A)tcos(Aq 12212222222h2 
     

(35) 

Then,   

 yshysin)tcos(A)y(fq)t,y(u nnn122122h1   
(36)

 

And 

 yshysintcos(A)y(fq)t,y(w nnn222222h2   
(37)

 

As A1 is different from A2, the orbits described by the 

rotor are ellipses with an inverse precession for the first 

mode and a direct precession for second one. 

 

4. CAMPBELL DIAGRAM 
 

The characteristic equation for each considered case is 

obtained from the corresponding system of equations (11) 

to (16). It allows having the frequencies at rest and the 

frequencies in rotation. 

In Campbell Diagram (Figure 2 and Figure 3), the 

functions 1=1() et 2 = 2() are represented cut by 

the straight lines = (the synchronous case) and  = s 

(an asynchronous case with s= 0.5) to get the intersection 

points A and B for the first and, C and D for the second. 

The values of the frequencies corresponding for these 

points are obtained using  = s in (24), that is: 

0kks)kk(m)ams(s 21
22

21
42222 

    
(38) 

From this we find the critical value c for the cases s=1 

and s=0.5. 

In the simply-simply supported case,  

- Rotor with one disc : 

010255.2)2297.010.398.20( 152254   
(39)

  

s/rd997.962m/k110 
 

s/rd763.1057m/kand 120 
     

(40) 

  122235235

1 100317.110456.210199.1010456.210199.10  
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  122235235

2 100317.110456.210199.1010456.210.199.10  

 
(40)

 A: c1=958 rd/s ; B: c2 =050.954 rd/s,    

C: c1 =1812.974 rd/s ; D: c2 =2192.32 rd/s.                    

- Rotor with two discs :  

010255.2)1068.1210587.8( 1522254   
(42)                 

s/rd831.624m/k110  and s/rd372.684m/k120   (43)                   

  112225225

1 10828.1101438.5102938.4101438.5102938.4                      

  112225225

2 10828.1101438.5102938.4101438.5102938.4  

 
(44) 

 

 
Figure 2(a) : Rotor with one disc, simply-simply supported case 

 

 
Figure 2(b) : Rotor with two discs, simply-simply supported case 
 

 
Figure 2(c) : Rotor with three discs, simply-simply supported 

case 

 

A: c1 = 565.356 rd/s ; B: c2 =798.5135 rd/s,     

C: c1 =1017. 45 rd/s ; D: c2 =2191.33rd/s.                    

- Rotor with three discs:  

010.255.2)10756.1310506.61( 1522244       
(45) 

s/rd787.528m/k110 
 
and s/rd176.579m/k120 

 
(46)                           

  102224224

1 103449.21086.2107531.301086.2107531.30  

  102224224

2 103449.210.86.2107531.301086.2107531.30  

 

  
(47)                          

A: c1 =492.917 rd/s ; B: c2 =639.857 rd/s,   

C: c1 =906.314 rd/s ; D: c2 =1772.77rd/s. 

 

 

 
Figure 3(a) : Rotor with one disc, free-simply supported case 

 

 
Figure 3(b) : Rotor with two discs, free-simply supported case 
 

 
Figure 3(c) : Rotor with three discs, free-simply supported case 
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In the free-simply supported case, 

- Rotor with one disc:  

0100883.3)104619.210237.35( 1222454  
  

(48) 

s/rd0459.1279m/k110 
 

and          s/rd962.1373m/k120            (49)    

  12224545

1 100883.310462.210273.3510462.210237.35                             

  12224545

2 100883.310462.210273.3510462.210237.35    

(50) 

A: c1 =1278.036 rd/s ; B: c2 =1375.2168 rd/s,   

C: c1 =2550.3034 rd/s ; D: c2 =2757.667 rd/s.                    

- Rotor with two discs:  

01018327.1)10168.11081.21( 1222354  

 
 (51)   

s/rd299.1006m/k110 
 

and        
s/rd975.1080m/k120            (52)                                  

  12224545

1 1018327.110841.5109057.1010841.5109057.10  

 

  12224545

2 1018327.110841.5109057.1010841.5109057.10  

(53)                                        

 A: c1 =1002. 69 rd/s ; B: c2 =1085.49 rd/s,    

C: c1 =1987. 43 rd/s ; D: c2 =2194.46 rd/s. 

- Rotor with three discs:  

01018327.1)10168.11081.21( 1222354    (54)                 

                  s/rd299.1006m/k110    

and           s/rd975.1080m/k120 
     

  (55)                             

  12224545

1 1018327.110841.5109057.1010841.5109057.10  

 

  12224545

2 1018327.110841.5109057.1010841.5109057.10  

   
(56)   

A: c1 =900. 89 rd/s ; B: c2 =1058. 6 rd/s,  

C: c1 =1705. 27 rd/s; D: c2 =2311.056 rd/s.   

 

 

5. RESPONSE TO A SYNCHRONOUS FORCE 
 

When considering the excitation force due to the mass-

unbalance, the steady state solution which is the particular 

solution is found by solving the inhomogeneous system of 

equations (17) i.e the system with second member. For this 

one, the solutions of the system may have the form: 











)tcos(Aq

)tcos(Aq

2e2ep2

1e1ep1

     

 (57)  

 

They can be transformed in a complex form as: 

 












tjexpAq

tjexpAq

2ep2

1ep1        (58) 

With:     1e1e1e jexpAA    and  2e2e2e jexpAA   

Their introduction in the inhomogeneous complex 

system yields: 












)t(jexpCqkqaqm

)2/t(jexpCqkqaqm

2

p22p1p2

2

p11p2p1




      (59) 

 or  









































2

2

2e

1e

2

2

2

22

1

C

)2/jexp(C

A

A

mkja

jamk        (60) 

This last system of equations represents a linear system 

with two unknowns 1eA  et 2eA  that depend on a 

parameter . The determinant method gives: 

2

2

2

22

1

2

2

2

22/j2

1e

mkja

jamk

mkC

jaeC

A













=
 422

2

2

1

42/j2

2

2

a)mk)(mk(

jaCe)mk(C



 

    

        =
 422

2

2

1

22

2

2

a)mk)(mk(

)amk(jC



      (61) 

2

2

2

22

1

22

2/j22

1

2e

mkja

jamk

Cja

eCmk

A













=

 422

2

2

1

2/j42

1

2

a)mk)(mk(

ejaC)mk(C



 

 

       

=
 422

2

2

1

22

1

2

a)mk)(mk(

)amk(C





     

 (62) 

From these relations, we obtain:    

 
422

2

2

1

22

2

1
))((

)(






amkmk

Camk
Ae

 

and             (63) 

 
422

2

2

1

22

1

2e
a)mk)(mk(

C)am(k
A






     

 

Also          e1 = -/2 and  e2 = 0 
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So we can write:    

q1p = Ae1 sint   and      q2p = Ae2 cost                    (64) 

As Ae1 et Ae2 are different, the orbits described by the 

rotor are ellipses. The expressions of the critical speeds 

come from the denominator of the equation (62) when it is 

equal to zero, that is: 

 

0kk)kk(m)am( 21

2

21

422 
     

(65) 

We remark that this equation is similar to equation (38) 

for the case where s = 1. The two critical speeds of rotation 

correspond to the points A and B. However the sense of 

precession is given by the product of the amplitudes.  

Indeed, if Ae1.Ae2 > 0 the precession is direct and if Ae1.Ae2 

< 0 the precession is reverse. 

In order to know the sign of Ae1.Ae2, we have to know the 

sign of the following function: 

  2

2

2

1

2 )am(k)am(k)(f         (66) 

It is equal to zero for the two values of :   

)am/(k11    and  )am/(k 22   

These allow having the sense of the precession for each 

value of the rotational speed (see figure 4). 

 
Figure 4 :  Variation of the sense of the precession 

 

For the different cases of the considered model of rotor 

defined by equations (11) to (16), we have:  

In the simply-simply supported case,  

- Rotor with one disc:  

 
15284

224

1e
10.255,210.59,44706,2185

10.415,4220,486
A








,

 
15284

224

2e
10.255,210.59,44706,2185

10.415,4297,405
A








       

(67)  

- Rotor with two discs:  

 
1521042

223

1e
10.255,210.059,110.646,110

10.371,1220,486
A








,

 
1521042

223

2e
10.255,210.059,110.646,110

10.371,1297,405
A








  

(68)  

 

- Rotor with three discs:  

 
1521043

223

1e
10.255,210.4788,110.668,22

10.9248,1055,521
A








,

 
1521043

223

2e
10.255,210.4788,110.668,22

10.9248,1334,434
A








   

(69)   

In the free-simply supported case, 

- Rotor with one disc:  

 
15284

224

1e
10.577,810.5765,9681,2703

10.1786,5875,973
A








, 

 
15284

224

2e
10.577,810.5765,9681,2703

10.1786,5968,843
A








    (70)  

- Rotor with two discs:  

 
152104

224

1e
10.577,810.581,1352,7240

10.619,8875,973
A








, 

 
152104

224

2e
10.577,810.581,1352,7240

10.619,8968,843
A








  

(71) 

 

- Rotor with three discs:  

 
152104

223

1e
10.577,810.822,1576,9430

10.1738,48,3700
A








,

 

 
152104

223

2e
10.577,810.822,1576,9430

10.1738,4149,3207
A








  

(72)  

 

Ae1 and Ae2 are represented in absolute values on figure 

5 and figure 6, where we see that the phenomenon of 

resonance occurs for two critical values unlike the 

symmetric case where it occurs for a single value. On the 

other hand, when  >> 0 (very positive), the amplitudes 

Ae1 et Ae2 will be equal and tend to a constant value equals 

to: 9.8338 10-7m. 

 

6. REPONSE TO AN ASYNCHRONOUS FORCE 
 

  The rotor can also be excited by an 

asynchronous force during its operation. It is a 

force with a constant amplitude F0 and speeds s 

different from that of the rotor. If the force is 

applied in l3 we have: 

tssinFtssin)l(fFF 301q 
       

and tscosFtscos)l(fFF 302q          (73) 

 

The equations to be resolved will be : 

 







tscosFqkqaqm

tssinFqkqaqm

2212

1121




                     (74) 
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Figure 5(a) : Response to a synchronous force: rotor with one 

disc, simply-simply supported case 

 

 
Figure 5(b) : Response to a synchronous force: rotor with two 

discs, simply-simply supported case 

 

 
Figure 5(c) : Response to a synchronous force: rotor with three 

discs, simply-simply supported case 

 

As the precedent case, the solutions are of the form: 

 
21

2

21

242222

22

2

1e
kk)kk(ms)ams(s

F)asms(k
A






 

And          (75)               

 
21

2

21

242222

22

1

2e
kk)kk(ms)ams(s

F)asmh(k
A






                                                          

 

 
Figure 6(a) : Response to a synchronous force: rotor with               

one disc, free-simply supported case. 

 

 
Figure 6(b) :  Response to a synchronous force: rotor with two 

discs free-simply supported case. 

 

 
Figure 6(c) :  Response to a synchronous force: rotor with three 

discs free-simply supported case. 
 

The critical speeds are given by the same equation (38) and 

the orbits are described by ellipses. 
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









)tscos(Aq

)tscos(Aq

2e2ep2

1e1ep1

      

(76)          

The calculations lead us to:

 In the simply-simply supported case,  

 
Figure 7(a) :  Response to an asynchronous force: rotor with one 

disc simply-simply supported case. 
 

 
Figure 7(b) :  Response to an asynchronous force: rotor with two 

discs simply-simply supported case. 
 

 
Figure 7(c) :  Response to an asynchronous force: rotor with three 

discs simply-simply supported case. 
 

- Rotor with one disc:  

15284

26

1e
10.255,210.147,115636,136

F)928,1110.015,52(
A






, 

15284

26

2e
10.255,210.147,115636,136

F)928,1110.358,43(
A






     

(77)                                                

- Rotor with two discs: 

15284

26

1e
10.255,210.479,26636,453

F)574,4510.015,52(
A




 ,  

 
Figure 8(a) :  Response to an asynchronous force: rotor with one 

disc free-simply supported case. 

 

 
Figure 8(b) :  Response to an asynchronous force: rotor with two 

discs free-simply supported case. 

 

 
Figure 8(c) :  Response to an asynchronous force: rotor with three 

discs free-simply supported case. 
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15284

26

2e
10.255,210.479,26636,453

F)574,4510.358,43(
A






      

(78)                                               

 

- Rotor with three discs:  

15284

26

1e
10.255,210.9719,3686,1158

F)31,5710.015,52(
A




 , 

15284

26

2e
10.255,210.9719,3686,1158

F)31,5710.358,43(
A






      

(79)   

In the free-simply supported case, 

- Rotor with one disc:  

15284

26

1e
10.577,810.466,244136,173

F)588,1310.4867,99(
A




 , 

15284

26

2e
10.577,810.466,244136,173

F)588,1310.216,86(
A






     

(80)                                                       

- Rotor with two discs:  

15284

26

1e
10.577,810.5268,39934,450

F)74,2210.4867,99(
A




 , 

15284

26

2e
10.577,810.5268,39934,450

F)74,2210.216,86(
A






       

(81)                                               

 

- Rotor with three discs:  

15284

26

1e
10.577,810.555,45261,552

F)569,3110.4867,99(
A




 , 

15284

26

2e
10.577,810.555,45261,552

F)569,3110.216,86(
A






      

(82)  

The amplitudes Ae1 and Ae2 for F=1N, are represented 

in figures (7, 8) where the critical speeds are the speeds that 

make the magnitude infinite and the denominator of a zero 

value.  

 

CONCLUSION 
 

In this work we have investigated the effect of the 

change in the boundary conditions on the vibration 

behavior of flexible rotor. The supported-free case is 

examined and compared with the supported-supported case 

of Lalanne and Ferrari.  

On the one hand the results obtained by the Campbell 

diagram showed a net difference of critical speeds for these 

two cases.  

On the other hand forces synchronous and asynchronous 

responses have given separate curves where you notice for 

the supported-free case of frequencies of overtones than 

those of the cases supported-supported.  

It gives the possibility to work with greater speeds. Also 

it may be noted that playing on the boundaries conditions to 

allow avoiding the critical speeds for a given rotational 

speed and without changing the rotor structure. 
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