MIXED FINITE ELEMENT FOR CRACKED INTERFACE

Auteurs-es

  • S BOUZIANE Université Guelma
  • H BOUZRED Université Guelma
  • M.S GUENFOUD Université Guelma

Mots-clés :

Mixed interface finite element, Cracked interface, Energy release rate, Virtual crack extension

Résumé

     A special finite element based on Reissner’s mixed variational principle has been presented to study interfacial cracks in bimaterials. The present element is a 7-node two dimensional mixed finite element with 5 displacement nodes and 2 stress nodes. The mixed interface finite element ensures the continuity of stress and displacement vectors at the interface on the coherent part and the discontinuity of this one on the cracked part. This interface element was associated with the virtual crack extension method to evaluate the energy release rates using only one meshing by finite elements. Results obtained from the present mixed interface element have been shown to be in good agreement with the analytical solutions

Bibliographies de l'auteur-e

S BOUZIANE, Université Guelma

Laboratoire deGénie Civil et Hydraulique

H BOUZRED, Université Guelma

Laboratoire deGénie Civil et Hydraulique

M.S GUENFOUD, Université Guelma

Laboratoire deGénie Civil et Hydraulique

Références

S. N. Alturi, S. Gallagher, O. C. Zienkiewicz., ‘Hybrid and

mixed finite element method’, New York, John Willey and

Sons, 1983.

R. C. Mahapatra, S. P. Dasgupta, ‘The mixed finite element

method in elastic and elastoplastic axisymmetric problems’,

Comput. Struct. 30, pp. 1047-1065, 1988.

L. R. Herrmann, ‘A bending analysis for plates’, Proc. Conf.

Matrix Methods in Structural Mechanics, AFFDL-TR-66-80,

pp. 577-604, 1966.

F. A. Mirza, M. D. Olson, ‘The mixed finite element method

in plane elasticity’, Int. J. Num. Meth. Engng. vol. 15, pp.

-289, 1980.

A. K. Noor, ‘Multified (mixed and hybrid) finite elements

models’, State of the art surveys in finite element technology,

ASME, chapter 5, pp. 127-162, 1983.

S. Aivazzadeh, ‘Eléments finis d’interface. Application aux

assemblages collés et structures stratifiées’, Thèse de docteuringénieur,

Université de Technologie de Compiègne, 1984.

M. Habib, ‘Eléments finis axisymétriques d’interface pour

l’analyse des structures stratifiées et des assemblages collés’,

Thèse de doctorat, Université de Claude Bernard (Lyon I),

M. Bichara, ‘Formulation d’éléments d’interface. Application

aux assemblages colles’, Thèse de doctorat, Université Paris

VI, 1990.

A. Sarhan-Bajbouj, ‘Eléments finis d’interface pour le calcul

des structures hétérogènes’, Thèse de doctorat, Université de

Claude Bernard (Lyon I), 1990.

C. P. Wu, C. C. Lin, ‘Analysis of sandwich plates using

mixed finite element’, Compos. Strut. 25, pp. 397-405, 1993.

E. Carrera, ‘C0 Reissner-Mindlin multilayered plate elements

including zig-zag and interlaminar stress continuity’, Int. J.

Num. Meth. Engng. 39, pp. 1797-1820, 1996.

E. Carrera, ‘Mixed layer-wise models for multilayered plates

analysis’, Compos. Struct. 43, pp. 57-70, 1998.

E. Carrera, ‘Transverse normal stress effects in multilayered

plates’, ASME J. Appl. Mech., 66, pp. 1004-1011, 1999.

G. S. Ramtekkar, Y. M. Desai, A. H. Shah, ‘Mixed finite

element model for thick composite laminated plates’, Mech.

Adv. Mater. Struct. 9, pp. 133-156, 2002.

G. S. Ramtekkar, Y. M. Desai, A. H. Shah, ‘Application of

three-dimensional mixed finite element model to the flexure of

sandwich plate’, Comput. Struct. 81, pp. 2183-2198, 2003.

Y. M. Desai, G. Y. Ramtekkar, ‘Mixed finite element model

for laminated composite beams’, Struct. Eng. Mech. 13, pp.

-276, 2002.

A. N. Bambole, Y. M. Desai, ‘Hybrid-interface finite element

for laminated composite and sandwich beams’, Finite

Elements in Analysis and Design, 43, pp. 1023-1036, 2007.

H. Bouzerd, ‘Elément fini mixte pour interface cohérente ou

fissurée’, Thèse de doctorat, Université de Claude Bernard

(Lyon I), 1992.

G. Verchery, ‘Méthodes numériques de calcul des champs de

contraintes dans les matériaux hétérogènes, Calcul des

Structures et Intelligence Artificielle’, Fouet J. M., Ladeveze

P., Ohayon R., vol. 1, Paris, Pluralis, pp. 7-21, 1987.

R. H. Gallagher, ‘Introduction aux éléments finis’, Pluralis

(traduction française), 1976.

D. M. Parks, ‘A stiffness derivative finite element technique

for determination of elastic crack tip stress intensity factors’,

Int. J. Fracture, 10, pp. 487-502, 1974.

N. J. Pagano, ‘Exact solutions for rectangular bidimensionnal

composite and sandwich plates’, Journal of Composite

Materials, vol. 4, pp. 20-35, 1970.

K. Y. Lin and J. W. Mar, ‘Finite element analysis of stress

intensity for cracks at a bimaterial’, Int. Journal of Fracture,

vol. 12, pp. 521-531, 1976.

J. R. Rice and G. C. Sih, ‘Plane problems of cracks in

dissimilar media’, Journal of Appl. Mech., 32 series E, n°2,

pp. 418-423, 1965.

Téléchargements

Publié-e

2007-12-01

Comment citer

BOUZIANE, S., BOUZRED, H., & GUENFOUD, M. (2007). MIXED FINITE ELEMENT FOR CRACKED INTERFACE. Sciences & Technologie. B, Sciences De l’ingénieur, (28), 17–22. Consulté à l’adresse https://revue.umc.edu.dz/b/article/view/241

Numéro

Rubrique

Articles

Articles similaires

<< < 1 2 3 4 > >> 

Vous pouvez également Lancer une recherche avancée d’articles similaires à cet article.