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Abstract

Using the tunneling effect method near the black hole horizon and the WKB approximation
for both fermionic and bosonic particles, some aspects are shown and discussed in a de

Sitter-Schwarchild space-time type.
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I. INTRODUCTION

In this paper we study the tunneling behavior of spin -1/2
fermions across the event horizon of the Schwarzschild-de
Sitter black hole where effects of quantum gravity are taken
into account , and using the Hamilton-Jacobi method [1,2].
However, for the case of the bosons we try to find an exact

formula for 0,-1(r) for an arbitrary non-Abelian Yang-Mills
theory [3,4].

II. HAWKING RADIATION OF SCHWARCHILD-DE
SITTER BLACK HOLE
The metric of any spherically symmetric solution in a

Schwarzschild form is:

2

. 5 dr
ds® = —f(r)dt +f(r)

The vacuum Einstein equations give a linear equation for
f(r), which has as solutions:

f(r)y=1-2a/r

+ r2(d6? + sin?0 do?

and
f(r)=1—br?

The first is a zero stress energy solution describing a black
hole in empty space time, the second (with b positive)
describes de Sitter space with a stress-energy of a positive
cosmological constant of magnitude 3b. Superposing the two
solutions gives the de Sitter— Schwarzschild solution:

f(r)=1-2a/r — br?

We remind that the two parameters a and b give the black
hole mass and the cosmological constant respectively.
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Ill. FERMIONS

The fermion’s motion is determined by the generalized
Dirac equation ref. [1]

iy%0, + iy'o;(1 — pm?) + iyiﬁhz(ajaj)ai
+2 (1 + Bh?0;0/ — pm?) P =
+iykQ, (1 + Br%9;07 — pm?)

0 (1)
Where :
— L ab
'QH = E(UM Zab
Zap =7 V%" vy = 20,
wuab = e, %%, ,;1 — eﬂ,,auela

We assume that the wave function of the spin up state has
the form:

P = exp (%I(t, 7,0, @)) )

o o x

and

e, = diag(\/f, 1/\/7,1‘,7” sin @),

vt = \/%((l) —Oi)'

y8 = [g% (001 %1),
=i (% 7).
Y9 = [g (;)2 %2) 3)
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With

g — 1 00 — 1
9% =1.Vg% =

rsiné’

o' are the Pauli matrices. Our purpose is to find the solutions

of eqn (1). First substituting the wave function egn (2) and the
matrices egn (3) into the generalized Dirac equation egn (1).
Since we are working With the WKB approximation we
obtain 4 Hamilton-Jacobi equations:

—iA\/—l?atI
—AmB[g™ (0,1)* + g%%(9e1)* + g°°(951)?]
+BBf0.1[g™ (3,1 + g°° (Bp1)? + g°° (8p1)?]

+Am(1 —pm?) =0

- B — gm?)\[fo,1

4)

iB \/—17@1 —A(1 - pm?)\[fo,1

~BmB[g™ (8,1 + g% (85 1)* + g°°(3p1)?]
+ABfo,1[g7(8:D* + g%° (99 )* + g°° (051)7]

+Bm(1 — fm?) =0 ®)

—(1 = Bm?),/g%d,1 )
+Bg%%0y1[ g™ (8,1)* + g% (01)? + g°°(851)?] £ B

—i(1 — pm?)\[g?,1 |
+iBy[g%%0,1[g7 (3,1)> + g°° (051)> + g°°(051)?])

0(6)
R

+8 /g%ael[g”(arl)z + g% (891 + g®°(9y1)?]

(
|
\

—i(1 — pm?) |g®%0,1

+iB g% 0p1[g™ (8:D)* + g% (3o D)* + g°° (0p1)?]
()

To find the relevant solution we perform the separation of
variables as follows:

I=—-wt+W(r)+06(0,0)

eqn (6)and egn (7)They are identical after divided
respectively by A and B

( /geeage +i ’g(wa@e)

[Bg™ (0, W)? + B g% (8,0)% + Bg?®(8y0)?
-(1-pm?)]|=0

< ’geeage +1i fgm’aq,G) =0

eqn (4)and egn (5) They are identical after cancelling A and
B and give

AG(arW)6 + A4(arW)4 + Az(arW)z + AO S O

With

Ag = ,Bzf4
Ay =Bf3m?B +2BQ — 2)

Ay = f2[(1 = pm?)? + p(2m? — 2m*f — 2Q
+BQ)]

= —m?(1 - pm? - Q)*f — w?
Q = g% (090) + g°°(9,6)* = 0

4o

Neglecting the higher orders of 8 and solving the above
equations at the event horizon yields

W(r) = if(F.A) dr

where
= %\/mz(l —2B8m?)f + w?
and
_ 2 @
A—(1+ﬂ(<m + f))
With:

fr) = 1—27‘1—b7"2

r=0

The tunneling rate [5] of the spin -1/2 fermion crossing the
horizon is

= P(emission) _ exp(—21m1+)

- P (absorption) B exp(—2ImI_)
_ exp(—2ImW, — 2Im0)

~ exp(—2ImW._ — 2Im®)

the Hawking temperature

h
T = " (Imw ()1
IV. FERMIONS
The equation of motion give by
0=VYF
= gﬁa[aa o~ Fa);lFA% - Fa%F;?A + gfabcAgFacu]
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Where we defined
iy = 0,45 — 09 A% + gf P AL AG

We assume the vector field

i,
a — a, -
uw=aqueh

Before simplifying slightly, We obtained finally
tt 1 a 2
0=g ﬁat (9:1)

+g7 [ a20,10,1 + [io,af — Fgreatas
S ]
Taking the semi classical limit we obtain
@2 = f2(8,1)* = 9,1 = ££3,1

We perform the separation of variables as follows:

I(r,t,0,9) = Qt + W(r) +1'(8, 9)

we obtain
O+ oW (r)
=f ar
dr
W(T) =+4Q T

The tunneling rate is given by

= P(emission) _ exp(—2Iml, )
P(absorption) exp(—2ImI_)

_ exp(—2ImW,)
~ exp(—=2ImW.)

And therefore, the Hawking temperature reads:

_— (1 f dr)‘l
= — m —_—
4\ f
It is worth to mention that we have used Matlab[6] to solve
this problem , the equation r—2a—br3 =0 gives

3horizons ry, 1, 1, for each we calculate the temperature of

Hawking near ry, r,, 1, . After we draw the corresponding
curves Ty 53 = f(a, b) we get

11

- g ez e 2t sy o2 £ g O O e R T 02 et e 2 iy s

The temperature near r, ‘

A1 3.0-0.004(x (coni(1 0 -27e1+b% sqni((a® b B.1e1-3.06) 30" 080 (1 0020 st .0) (e

The Hawking temperature near r,

AR 3,041 0)+x (canj(! Dita -2 7e1+b2 sert(a? b 8.1e1-3.008) 305" 0P 9 (1 002 Oy+sqn(3.0) (co

IR

The Hawking temperature near r,
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CONCLUSION

We have calculated the Hawking radiation temperature of
spin 1/2 particles in the 4-dimensional Schwarzschild-de
Sitter spacetime with Hamilton-Jacob method. As it is the
case of the spin 1 particles.The tunneling rate and Hawking
temperature were represented.
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