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Abstract 

  
 

This paper summarizes a numerical study of the effects of buoyancy ratio on double-
diffusive natural convection in square inclined cavity filled with fluid saturated porous media. 
Transverse gradients of heat and solute are applied on the two horizontal walls of the cavity, 
while the other two walls are impermeable and adiabatic. The Darcy model with the 
Boussinesq approximation is used to solve the governing equations. The flow is driven by a 
combined buoyancy effect due to both temperature and concentration variations. A finite 
volume approach has been used to solve the non-dimensional governing equations. The 
results are presented in streamline, isothermal, iso-concentration, Nusselt and Sherwood 
contours for different values of the non-dimensional governing parameters. 
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I. INTRODUCTION 
Heat and mass transfer and fluid flow induced by double 

diffusive natural convection in fluid saturated porous media 
have been the object of considerable efforts owing to their 
practical importance in many engineering applications such 
as the migration of moisture through air contained in fibrous 
insulations, chemical reactors and transport of contaminants 
in saturated soil and electrochemical processes. The 
published numerical, experimental and  analytical results 
concerning convective heat and mass transfert in fluid 
saturated porous media, represent an important bibliography 
may be found in the book by Nield and Bejan [1] and  the 
second one by Ingham and Pop [2]. Most of the existing 
studies in the literature on double diffusive convection are 
dealing with horizontal square cavities. Trevisan and 
Bejan[3], studied analytically and numerically the mass 
transfer resulting from high convection in a porous medium 
heated from below  they indicated the existence of different 
scaling laws for the dependence of the Nusselt number versus 
the Rayleigh and Lewis numbers. The thermo-solutal 
bifurcation phenomena in porous enclosures subject to 
vertical temperature and concentration gradients has been 
studied numerically and theoretically by Mamou and Vasseur 
[4]. In the case of a horizontal porous cavity partially heated 
from below and differentially salted, Bourich et al. [5] 
reported numerical results of thermo-solutal natural 
convection. They found multiple solutions in pure thermal 
convection vanish in the presence of horizontal solutal 
gradients when critical conditions, depending on the Rayleigh 
and Lewis number, are reached. The same author [6] 
demonstrated that the solutal buoyancy force induced by 
horizontal concentration gradients eliminates the multiplicity 
of solutions obtained in pure thermal convection when N 
exceeds some critical value, which depends on Le and Ra, 
when they studied the double diffusive convection in a porous 

enclosure submitted to cross gradients of temperature and 
concentration. They also analyzed the effects of the 
governing parameters on the flow structure and heat and mass 
transfer. The existence of multiple solutions in a horizontal 
porous enclosure heated horizontally and salted from the 
bottom has been studied numerically by Mohamad and 
Bennacer [7]. It was demonstrated that the multiplicity of 
solution obtained when Grm (modified Grashof number) 
=1000 and 0.8≤N≤1. The bifurcation from monocellular 
dominating flow to bicellular dominating flow in this range 
of N, and in the case of thermally driven flow has been 
observed and the concentration gradient reversal was 
possible. Mahidjiba et al. [8] studied numerically by using 
linear stability analysis the onset of double diffusive 
convection in a horizontal porous cavity. They specified 
mixed boundary conditions for heat and solute on the 
horizontal walls of the enclosure while the two vertical ones 
are impermeable and adiabatic. It is shown that there exists a 
supercritical Rayleigh number for the onset of the 
supercritical convection and an over stable Rayleigh number, 
at which over stability may arise. The over stable regime is 
shown to exist up to a critical Rayleigh number at which the 
transition from the oscillatory to direct mode convection 
occurs. In a numerical and analytical study by Kalla et al. [9] 
of double-diffusive natural convection within a horizontal 
porous layer, where the vertical and the horizontal walls are 
submitted respectively to uniform heat and mass fluxes, they 
demonstrated the existence of multiple steady-state solutions, 
for a given set of the governing parameters. The double-
diffusive natural convection problem in parallelogrammic 
enclosures filled with fluid-saturated porous media has been 
studied numerically by Costa [10]. Vertical walls are 
maintained at constant deferent levels of temperature and 
concentration, and the inclined walls are adiabatic and 
impermeable. It is shown that in terms of flow structure, 
temperature levels and concentration levels, strong changes 
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occur in the parallelogrammic enclosure when changes are 
made on the Darcy-modified Rayleigh number, on the 
inclination angle and on the aspect ratio of the enclosure. 
Very different behaviors are obtained for the combined or 
opposite global heat and mass flows that cross the 
parallelogrammic enclosure. A literature review shows that 
relatively little work is available on the case of natural 
convection in inclined enclosures. Therefore, the present 
paper investigates numerically double diffusive natural 
convection within a porous inclined cavity with localized 
heating and salting from below. The complete system of 
governing equations is solved numerically and results are 
obtained for a large range of the governing parameters. The 
global Nusselt and Sherwood numbers dependence on the 
dimensionless governing parameters and boundary 
conditions is explored in detail. 

II.  MATHEMATICAL FORMULATION 
The studied configuration, depicted in Fig.1, is a square-

saturated porous cavity with length H. The cavity is tilted at 
an angle α with respect to the horizontal plane. The wall at Y 
= H represents the low-temperature (Tl) and low-
concentration (Sl) boundary, and the wall at Y = 0 denotes the 
high temperature (Th) and high concentration (Sh) boundary. 
The other two walls are regarded as being insulated and 
impermeable. It is assumed that the third dimension of the 
cavity is large enough so that the fluid flow and heat and mass 
transfer can be considered two-dimensional. Hypotheses of 
incompressible and laminar flow are considered, and the 
saturated porous medium is assumed isotropic and 
homogeneous with constant thermophysical properties. 
Interaction between the thermal and concentration gradients, 
(Soret and Dufour effects) are neglected. The binary fluid that 
saturates the porous matrix is modelled as a Boussinesq 
incompressible fluid whose density variation can be 
expressed as: 

 
( ) ( )[ ]000 1 SSTT ST −−−−= ββρρ                    (1) 

 
Where Tβ  and Sβ  are the thermal and concentration 

expansion coefficients. Subscript 0 stands for a reference 
state. 
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The following non dimensional variables are introduced: 
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The dimensionless governing equations, based on the 
above definitions, are as follows:   
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Where ψ+, T+ and S+ are dimensionless stream function, 

temperature and concentration, respectively. 
 

The dimensionless boundary conditions are: 
 

∀𝑥𝑥+, 𝑦𝑦+ = 0:  𝑇𝑇+ = 1,  𝑆𝑆+ = 1,  ψ+ = 0 
∀𝑥𝑥+, 𝑦𝑦+ = 1: 𝑇𝑇+ = 0, 𝑆𝑆+ = 0, ψ+ = 0        (8) 

∀𝑦𝑦+, 𝑥𝑥+ = 0 and 1: 𝜕𝜕𝑇𝑇
+
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From the dimensionless equations it is seen that the 

present problem is governed by three dimensionless 
parameters: the buoyancy ratio N, the Lewis number Le and 
the thermal Rayleigh number RaT defined as: 
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Fig. 1.Physical model and geometry 

 
The average values of Nusselt and Sherwood numbers, 

evaluated on the bottom wall are given by: 
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III. NUMERICAL SOLUTION 
The numerical solution of governing equations (4) – (7) 

with specified boundary conditions equations (8), is obtained 
using the volume finite method described by Patankar [11]. 
The computation domain is divided into rectangular control 
volumes with one grid located at the centre of the control 
volume that forms a basic cell.  The set of conservation 
equations are integrated over the control volumes, leading to 
a balance equation for the fluxes at the interface. 
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The iterative process, employed to find the stream 
function, temperature and concentration fields, was repeated 
until the following convergence criterion was satisfied: 
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Where Φ stand for Ψ, T and S. The subscripts I and j denote 
grid locations in the (x, y) plane. A further decrease of the 
convergence criteria 10−6 does not cause any significant 
change in the final results. Numerical tests, using various 
mesh sizes, were done for the same conditions in order to 
determine the best compromise between accuracy of the 
results and computer time. A mesh size of 61 ×61 was 
adopted. The accuracy of the code was checked, modifying 
the thermal and solutale boundary conditions, to reproduce 
the results reported in [6]. Good agreement can be seen from 
Table 1 with a maximum deviation of about 3.4%. 

 
TABLE I: VALIDATION OF THE NUMERICAL CODE, FOR α=0, Ra* = 200, 

N=0.3 AND VARIOUS LE, IN TERMS OF ψMAX, NU AND SH 
Le ψmax Nu Sh 

 Present 
work 

Ref.[6] Present 
work 

Ref.[6] Present 
work 

Ref.[6] 

0.1 11.625 11.706 4.484 4.633 1.209 1.221 
1 9.505 9.609 4.130 4.276 4.840 5.086 

10 9.104 9.171 3.983 4.078 15.870 17.02 

IV. RESULTS AND DISCUSSION 
A. Considered situations 
There are 4 dimensionless parameters governing the 

problem under analysis: Le, N, Ra*, α. All the presented 
results refer to moist air saturating the porous medium, with 
a low concentration of water vapor, thus fixing Le =0.8. Many 
values for N, Ra* and α in this work being taken N = (5, 2, 
0.5 and 0), Ra* = (100 and 70) and   ( 0°≤α≤ 90°). 

B. Flow structure, temperature and 
concentration fields, heat and mass transfer 
visualization 
The appearance of single or multiple cell flows in the 

porous material is an obvious characteristic of convection. 
The physical notion of a cell is associated with an identifiable 
body of fluid rotating in the same sense. Therefore, it has to 
be bounded by a closed streamline within which the vorticity 
is of the same sign. Positive and negative streamlines Ψ 
correspond to counter clockwise and clockwise circulations, 
respectively. The convective motion will be referred to as 
natural flow whenever the fluid is ascendant above the heated 
element. On the other hand the convective pattern will be 
called antinatural when the fluid is descendant above the 
heated element. 

In the case of no solute transfer N = 0 single or multiple 
cell convection was found. When α=0° and Ra*=100 the 
single cell mode was obtained. An example of this flow is 
given in Fig. 2 where the streamlines are shown. 

The stream function shows a single extremum value whose 
magnitude becomes larger as Ra* increases, indicating a 
more vigorous motion, as expected. As a function of the tilt 
angle, the ψ extremum value presents a maximum around 
45°.  

Results for α= 45°, Ra*=100 and combined global heat and 
mass flows are presented in Fig. 3a for N = 0.5 and in Fig. 3b 
for N = 2. Main changes from Fig. 2 to 3 are due to the 
increase on the buoyancy term. Flow is more intense, the 
temperature and concentration gradients are higher near the 
horizontal walls, and heat and mass transfer increases as N 
increases. As N increases, heat flows in an arrow region close 
to the right wall of the enclosure. In what concerns 
temperature and concentration fields, as Le = 0.8~ 1, there are 
no major differences on these fields. 

 

 
                                        (a) 

 
                                            (b) 
 

 
(c) 

Fig. 2. streamlines for N = 0 (a) Ra=70, α= 0, Ψmax= 3.7,                                                  
(b) α= 0, Ra = 100, Ψmax= 2.7, (c) α=30°, Ra = 100, Ψmax= 6. 
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Fig. 3.Isotherms, iso-concentration and streamlines for combined global 
heat and mass flows, Le = 0,8,α= 45°, Ra = 100, for N =0.5, Ψmax= 8.9 

and  N=2, Ψmax= 14.4. 

C. Heat and mass transfer parameters 
In general terms, it can be observed that as Le=0.8≈ 1, 

there are no significant differences between the behavior and 
the numeric values of the global Nusselt and Sherwood 
numbers. Fig. 4. 

Global Nusselt number is presented in Fig. 5. as function 
of the inclination angle α for different values of the Buoyancy 
ratio N when Ra*=100. For low values of α (α ≈ 0°) and high 
values of α(α ≈ 90°) the global Nusselt number is nearly the 
same. When (0 ≤ α ≤ 45°) the Nusselt number increases for 
any value of N. It is observed the existence of a maximum 
Nusselt number for α near 45° and a minimum for α near 0°. 
A physical explanation can be given for the thermal diode 
effect. The hot fluid moves upwards and reaches the right 
wall, which has a favorable inclination, allowing some 
tangentiality to the flow flowing along the wall towards the 
cold wall. The same applies also for the descending cold fluid 

on the neighboring of the opposite horizontal wall. The flow 
is intense and the thermal gradients near the horizontal walls 
are high, thus resulting into high global heat transfer rates. 

 
Fig. 4. Global Nusselt and Sherwood numbers as function of the Buoyancy 

ratio N for α = 30° and  Ra= 100. 
 

The highest heat and mass transfer parameters occurring 
for the range40° ≤ α ≤ 60°) and the minimum Nusselt and 
Sherwood numbers correspond to α = 0°. It is also observed 
that the increasing of the buoyancy ratio, always leads to 
increases on the heat and mass transfer performances of the 
enclosure. 

 
Fig. 5. Global Nusselt number versus inclination angle α for different 

values of the Buoyancy ratio N. 
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CONCLUSIONS 
In terms of flow structure, temperature levels and 

concentration levels, strong changes occur in the square 
enclosure when changes are made on the Darcy-modified 
Rayleigh number, Buoyancy ratio N and on the inclination 
angle of the enclosure. Increasing the source term of the 
vertical momentum equation, by increasing the Darcy-
modified Rayleigh number or by increasing the buoyancy 
ratio, always leads to increases on the heat and mass transfer 
performances of the enclosure. Very different behaviors are 
obtained for the combined global heat and mass flows that 
cross the enclosure. In what concerns the heat and mass 
transfer performances of the square enclosure, some main 
aspects should be mentioned. Selected combinations of the 
buoyancy ratio and inclination angle can lead to considerably 
high heat and mass flows through the enclosure, and some 
combinations of these parameters can even lead to the 
maximum allowable heat and mass transfer. It is thus present 
a maximum transfer performance, which is of crucial 
importance when the enclosure is to be used as a transfer 
promoter. However, other selected inclination angles from he 
foregoing ones, can lead to essentially unchanged poor 
transfer performances of the enclosure. 
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