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Abstract 

In this study the proper orthogonal decomposition method is utilised as a model reduction 
technique in crack size estimation in a cracked plate under traction problem. The idea is to 
create a reduced model based on the results issued from finite element method, thus the crack 
size parameter is directly related to the boundary displacement obtained from the boundary 
nodes considered as sensor points. The inverse investigation is run using a genetic algorithm 
to minimization the error function expressed as the difference between data caused by the 
crack proposed by genetic algorithm in every individual and the one measured at the actual 
crack identity. The reduced model is validated by comparing the estimated structural 
response with the corresponding results from the finite element model. The effectiveness of 
the approach related to the used number of sensors is presented. Finally the stability of the 
method against uncertainty is tested by introducing different levels of white noise to the 
reference data. 
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I. INTRODUCTION 
Crack initiation and propagation is an omnipresent fact in all 
structures undergoing cyclic loads due to the fatigue 
phenomenon. In most cases, cracks are engaged in a 
predictable location. Thus maintenance measures give big 
importance to the crack size, trying to follow its state to 
prevent reaching the dangerous level. 

There are several numerical methods for crack detection [1-
3], which use different theoretical bases, thus many of these 
methods are dedicated to the invention using completely 
theoretical parameters, where the data are not accessible 
experimentally. 

Inverse problems are defined as the problems where the 
output is known and the input or source of output remains to 
be determined. They are contrary to the direct problems, in 
which output or response are determined using information 
from input [4]. In the case of the Inverse Elastostatics 
Problem (IESP) of internal flaw detection, the location, the 
orientation and the size of the flaw are unknown but the 
displacements along the boundaries are known. In order to 
analyze this kind of problems, the boundary displacements, 
usually called “experimental data”, are obtained under 
known boundary conditions and compared with the 
calculated ones. 

Inverse crack or void identification problems can be stated as 
an optimization task. There are several optimization 
techniques summoned in [5]; the genetic algorithm (GA) is 
the most popular evolutionary algorithms with a diverse 
range of applications. It has been employed in inverse crack 
identification method in [6-8]. 

The most utilized methods in the calculation of the 
mechanical behavior of structures are boundary element 

(BEM) and the finite element (FEM) methods, mainly used 
to obtain the displacement field. The FEM and BEM was 
employed in inverse methods of structural analysis [9,10]. 
The weak point of FEM based inverse methods in general is 
the very high computational cost, model reduction can be 
used to solve the FEM difficulties. 

The proper orthogonal decomposition (POD) is a model 
reduction techniques proceed by the approximation of the 
problem solution using the appropriate set of approximation 
functions [11], which contributes to the  huge acceleration of  
the procedure since, once a trained model is built, it computes 
the system response in a times shorter by about five orders of 
magnitude compared to FEM as proved in [12], leading to a 
very quick alternative in inverse problems which provides 
simplicity and a considerably lower computational time. 

We introduce an inverse problem approach based on 
boundary measurement [13,14]. The proposed identification 
procedure is essentially the same as the one used in a 
traditional approach, except that the simulations required by 
optimization algorithm, are done with reduced model instead 
of FEM one. It is capable of estimating the crack’s size using 
GA that compares at every iteration the calculated boundary 
displacement data and one obtained from sensor points posed 
on the plate’s borders. 

II. POD-RBF AS A MODEL REDUCTION METHOD 
POD is a powerful statistical method for data analysis 
employed as model order reduction technique in many fields 
[15,16].In our study the POD is used to build a reduced model 
of a two dimensional central cracked plate under traction 
effort,  determining the boundary displacement field 
corresponding to different crack size applications, by 
exploiting the correlation of  results based on the results of 

B BENAISSA 
IDIR BELAIDI 
A HAMRANI 
Laboratory of Energetics 
Mechanics & Engineering,  
M’hamad Bougara University, 
Boumerdes, Algeria. 



 BRAHIM BENAISSA, IDIR BELAIDI, ADERRACHID HAMRANI 

8 
 

the finite element simulations of the system with different 
crack parameter sets, this known as the method of snapshots. 
The snapshot consists of the displacement vectors of the 
boundary nodes which are expected to be correlated.  They 
are stored in matrix U. 

U =

⎣
⎢
⎢
⎡u11 u12

u21 u22
⋯ u1S

u2S
⋮   ⋮ ⋱ ⋮

uN1 uN2 ⋯ uNS ⎦
⎥
⎥
⎤
          (1) 

Where 𝑁𝑁 is the total number of nodes and 𝑆𝑆 is the number of 
snapshot vectors 𝑈𝑈𝑖𝑖 or FEM simulations results, each 
corresponds to a crack length value. Parameters matrix 𝑃𝑃 
stores the crack length values 𝑃𝑃𝑖𝑖 . The main purpose of POD 
is to construct a set Φ of orthogonal vectors called POD basis 
vectors, resembling the snapshot matrix U in an optimal way 
by exploiting the expected correlation between the results 
vectors. Expressed by the linear relationship: 

U = Φ ⋅ A                                 (2) 

A is the matrix collecting the coefficients of the new basis 
combination; it is called the amplitude matrix. Referring to 
the orthogonality of Φ it can be computed from: 

A =  ΦT ⋅ U                        (3) 

Optimal basis vectors are defined by the performance of the 
proper orthogonal decomposition (POD) [17,18]: 

Φ = U ⋅ V ⋅ Λ−1 2�                           (4) 

Matrix 𝑉𝑉 stores the normalized eigenvectors of the 
covariance matrix C , and Λ is a diagonal matrix storing its 
eigenvalues: 

C =  UT ⋅ U                       (5) 

A high accuracy Φ �low dimensional approximation is 
extracted from Φ constructed as a POD basis.This is 
accomplished by preserving only K (K ≪ S) columns of  
that correspond to the largest eigenvalues; consequently the 
amplitude matrix A� is specified by: 

A� =  Φ�T ⋅ U          (6) 

Since, 

U = Φ� ⋅ A�                                 (7) 

The use of RBF interpolation different sets of parameters can 
be generalized not already included in the initial selection𝑃𝑃. 
The amplitudes matrix 𝐴𝐴 is defined by the combination of 
interpolation functions of the parameter vector 𝑃𝑃 gathered in 
the matrix 𝐺𝐺. The matrix 𝐵𝐵 gathers the unknown coefficients 
of this combination: 

A = B ⋅ G                                 (8) 

The interpolation functions are stated by [19]: 
𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑖𝑖(|𝑃𝑃 − 𝑃𝑃𝑖𝑖|) = 1

�|𝑃𝑃−𝑃𝑃𝑖𝑖|2+𝑐𝑐2
                 (9) 

Piis the parameter corresponding to Ui (for i=1,2,…,S). The 
argument of the i-th RBF is the distance |𝑃𝑃 − 𝑃𝑃𝑖𝑖|between its 
current parameter  Pi and the reference parameter𝑃𝑃. 𝑐𝑐 is the 
RBF smoothing factor. As the vector 𝑃𝑃 is normalized, 𝑐𝑐 is 
defined within this range [0,1]. In this paper 𝑐𝑐 is equal to 0.6. 
After the coefficient matrix 𝐵𝐵 is evaluated, a reduced model 
of (8) can be put in vector form: 

a(P) = B ⋅ g(P)                            (10) 

By defining the amplitude vector as a function of parameters, 
the (7) can be expressed as the approximation of the snapshot 
𝑢𝑢 corresponding to a new parameter vector 𝑃𝑃: 

u(P) = Φ� ⋅ a(P)                           (11) 

This reduced model is referred to as the trained POD-RBF 
network; it is completely able of reproducing unknown 
boundary displacement field of the structure corresponds to 
any set of crack parameter (length) 𝑃𝑃. It is noted that 
extrapolation outside the range of𝑃𝑃 leads to poor precision of 
the model. Also if the knot points 𝑃𝑃𝑖𝑖are very close to each 
other; the matrix𝐺𝐺could be singular, which can be avoided by 
reducing the𝑐𝑐value. 

III. IDENTIFICATION ALGORITHM 
A. Genetic Algorithms 

The genetic algorithm is an evolutionary optimization 
method; widely used for a variety of optimization problems 
in last decade [20]. 

The general idea of this method is inspired by natural 
evolution processes. The algorithm operates on a set of 
designs, called population, and the approach is to allow its 
individuals, i.e. designs, to reproduce and cross among 
themselves in order to obtain designs with better fitness. The 
fittest designs, i.e. those with low objective function values 
in the case of minimization, have good genetic characteristics 
and these are given higher probability of becoming chosen as 
parents to new designs, where the characteristics of the 
parents are combined. A population of N feasible random 
designs is initially generated where each design is 
represented by a binary string of 0’s and 1’s (binary 
encoding) or by its numerical value (real encoding). The 
objective function value for each design is calculated and 
used to compute the corresponding fitness value (a low 
objective function value imply a higher fitness value). Four 
basic operators are now used to generate the next generation 
of designs: reproduction, crossover and mutation and 
migration.  

Reproduction is an operator that basically selects designs 
from the population at the current generation and transfers 
them into a mating pool, i.e. a new population of same size, 
N. More fit designs have higher probability of getting 
selected and the same design can be selected more than once. 

The idea of crossover is to generate new designs by 
exchanging characteristics of designs from the mating pool. 
Starting and ending positions in two randomly selected 
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design strings from the mating pool are therefore selected 
using random numbers. The strings between these positions 
on the two design strings are then exchanged and the two new 
designs, i.e. progenies, replace their parents in the mating 
pool. 
Mutation is used to generate new designs by a mutation of 
existing designs. This is accomplished by changing the digit, 
i.e. 0 to 1 or vice versa in binary encoding, at a random 
location in a number of randomly selected design strings 
from the mating pool. The process of operating and updating 
the population is continued until a stopping criterion is 
satisfied. 

B. Structure of the identification algorithm 

The main notion of the proposed identification paradigm is 
to use model reduction for the generation of the structural 
response instead of simulation methods. The major steps are 
depicted in Fig. 1 and detailed as follows: 

1. Creation of a starting population of N individuals 
randomly. Each individual has one chromosome, 
corresponding to the crack (s) the length of the crack.  

2. Evaluation of every individual; by introducing the 
parameters to the reduced model that produces a 
corresponding boundary displacement vector u(P), and 
calculate the fitness value which is the error between the 
resulting vector and the measured vector of displacement 
cause by the real crack parameters u(P0) expressed as:  

�
F(P) = ‖u(P0)− u(P)‖2

‖u(P0)‖2

F�Poptimal� = min [F(P)]
           (12) 

3. Terminate the algorithm f the maximum number of 
generations or a defined fitness value is reached. Else 
continue. 

4. Ranks the population according their fitness value. Then 
select a proportion for reproducing a new generation. 
The top ranked are favorable to be selected. 

5. Performance of the crossover operation. 
6. Mutation of an indicated percentage of the resulting 

individuals. 
7. Replacement of the old population by new one and go to 

step 2. 

 

Fig. 1. Evolutionary Identification algorithm 

IV. IMPLEMENTATION AND DISCUSSIONS 

A. Problem description 

A plane strain plate containing a single crack is considered, 
the square plate subjected to a traction load is simulated using 
FEM code ABAQUS where the external boundaries are 
discretized by means of 80 elements per edge to finally 
collect the displacement of the border’s 320 nodes, for the 
construction of the reduced model and the identification 
method is implemented in MATLAB. After a series of 
experiments, the following genetic parameters are chosen 
based on the accuracy of results: Population size: 100, 
Crossover rate: 0.8, Mutation rate: 0.01. 
Since the proposed method relays on the nodal displacement, 
all boundary nodes are considered as sensor point. We 
consider data from sensors by obtaining the displacement 
results from the nodes chosen as sensors point. Fig. 2 depicts 
an example of the controlled plate using 8 sensors. 
For the placement of the sensors, we found that better results 
are acquired when they are dispersed uniformly on both left 
and right sides, respecting the same distance between every 
sensor point. 

 
Fig. 2.cracked plate with sensor. 

B. Model reduction 

The existence of a crack changes the behavior of the plate 
when put under traction, therefore the response of the 
structure, which is also affected by the changes of the crack 
length. Benefiting from this fact, the boundary displacement 

S 
Sensor point 
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of the structure is measured using sensors, and based the 
inverse crack size estimation on it. 
POD in this stage has been used to build a model relating the 
crack length with boundary displacement based on the 
displacement  values  collected from 13 scenarios of crack 
length 𝑠𝑠 belongs to the range 0 (no crack) to 12 mm. To test 
the accuracy of the new model, we compared the results 
issued from a crack parameter which is not included to 
snapshot data with equivalent results from FE model. The 
Fig. 3 displays the boundary displacement field of the FEM 
and POD models for the example of crack size equal to 2 mm, 
and Fig. 4 depicts the absolute value of the deference between 
those two fields.  

 
Fig. 3. Boundary displacement field comparison calculated 

by FEM and POD. 

 
Fig. 4.Efficiency of the proper orthogonal model. 

The reduced model provides very precise results as shown in 
the next two figures. Where the Figure 3 demonstrates 
identical results of the FEM and the POD models, and the 
Figure 4 shows that the error magnitude is very small where 
the major error is in the order of 0.0001 mm. 

C. Crack size estimation 

The inverse problem solved by GA, minimizing the cost 
function which is the deference between sensor’s 
displacement caused by the crack we want to estimate its size 
and the one proposed by GA using a Population size equal 
100.  

Table I presents the normalized crack size estimation results 
for different application by means of sensor’s number. 
Sensors number represents the quantity of sensors used 
knowing that it is spread on the left and right side of the plate. 
The first experience uses the data of all the nodes, later 

smaller sensor number is considered. Precession of 10-06 of 
cost function is chosen as the algorithm’s stopping criteria. 
The approach could estimate the crack size presenting high 
accuracy, even with a very low number of sensors, and shows 
that the inverse calculation on the reduced model is very 
practical data for crack identification problem. 
 
TABLE I: NORMALIZED RESULTS AND SOLUTION 

INFORMATION 

 
A small number of generations is needed due to the large 
population size used, which proven in previous calculations 
to be faster that smaller population number. It is noted that 
large number of sensors dons not mean greater result quality 
and that the number of sensors equal to 8 gives the best 
estimation. 

D. Noise 

In order to study the stability of the crack size identification 
algorithm to measurements uncertainty, some level of 
perturbation has been added to the exact input displacement 
from the 8 sensor point’s example. The noise is modelled by 
the White Gaussian law with fixed standard deviations. Fig. 
5, 6 and 7 shows the convergence to the results of three noise 
levels: 1%, 5% and 10% respectively, illustrating the 
performance of the algorithm thought 5 applications in each 
level. A number of 10 generations is taken as a stopping 
criterion. 
The variations obtained in the crack identity are in good 
agreement with the noise levels. It is noted that 1% of noise 
level does not affect the exactness of the results as shown in 
Figure 5.Giving an excellent average standard deviation 
equal to 0.003 at convergence, this is lower than the imposed 
perturbations rate of 0.01. 
The results of noise level 5% is satisfactory, since the 
algorithm still can approximate the crack length asthe 
average standard deviation for convergence is 0.042 which 
did not exceed 5%.Recognizing that, for the same 
configuration, the accuracy increases with the number of 
sensors. The perturbation for noise level 10% in the 
application of 8 sensors, the average standard deviation for 
convergence is high (0.163). 

Number of  
sensors generations Best fitness Normalized 

result of  size 

230  3 2,551E-06 0,9999784 
24  2 1,022E-06 1,0000473 
12  2 4,439E-06 1,0002098 
8  2 3,126E-07 0,9999664 
6  2 9,881E-07 0,9999212 
4  5 4,984E-06 0,9995465 
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Fig. 5.Crack size estimation in noise level 1% 

 

 

Fig. 6.Crack size estimation in noise level 5% 

 

Fig. 7.Crack size estimation in noise level 10%. 

V. CONCLUSION 
In This numerical study, we presented model reduction for 
crack size identification based on boundary displacement 
measurements, after the finite element model of the structure 
was created for different crack lengths, a reduced model 
based on POD-RBF method was extracted and the results 
issued from both models was compared to insure the 
efficiency of the reduced model. Crack size was investigated 
based on boundary displacement data using the genetic 
algorithm for the inverse calculation, the results have clearly 
shown that the developed algorithm is capable of predicting 
crack size accurately, and prove its effectiveness even with a 
very low number of sensors. 
The proposed study have demonstrated a high stability after 
a white noise was introduced to the input data, simulating 
measurement uncertainty. 

The employment of the GA for the optimization task helps 
avoid imitations problems typical for the classical 
optimization methods and POD-RBF produced an accurate 
reduced model of the system, providing a low computational 
cost. 
This method is extendable to experimental diagnostic study, 
due to the very few experiments required and the small 
number of sensor points required. 
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