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Abstract 

A model of the Lyra universe is presented. Using the tunneling effect approach, the Hawking 
radiation temperature near the black hole horizon is calculated.  
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I- INTRODUCTION 

Einstein developed [8] the general theory of relativity 
to unify gravity with  other fundamental forces, but in this 
theory, gravitation is described in terms of Riemannian 
geometry, which could not only help to unify gravitation and 
electromagnetism in a single space-time geometry [1]. For 
that reason, Lyra [2] proposed in 1951 a modifications on 
Riemannian  geometry (Lyra’s geometry) by introducing a 
gauge or scale function which removes the non-instability 
condition of a vector under parallel transport. Soon after, Sen 
[3] and Sen with Dun in 1971[5] constructed an analog of the 
Einstein field equation based on Lyra’s geometry as: 

 
𝑅𝑅𝑖𝑖𝑖𝑖 − 1

2𝑔𝑔𝑖𝑖𝑖𝑖𝑅𝑅 + 3
2𝜙𝜙𝑖𝑖𝜙𝜙𝑗𝑗 −

3
2𝑔𝑔𝑖𝑖𝑖𝑖𝜙𝜙𝑘𝑘𝜙𝜙

𝑘𝑘 = 8𝜋𝜋𝜋𝜋𝑇𝑇𝑖𝑖𝑖𝑖         (1) 
 

𝜙𝜙𝑖𝑖  is the displacement field vector where: 

𝜙𝜙𝑖𝑖 = (𝛽𝛽, 0,0,0)                             (2) 

𝛽𝛽 is a constant or a time-depending function. Further more, 
Sen and Dunn [3] gave a series type solutions to the static 
vacuum field equations. Retaining only a few terms in their 
solutions, we find that their solutions correspond to black 
holes (Lyra black holes). 

    In this paper, we study the Hawking radiation [4] of Lyra 
black hole. For that we proceed to analyze the Dirac equation 
in Lyra space-time and use the tunneling method because The 
Hawking's effect is a phase phenomenon. Such tunneling 
approach uses the fact that the WKB approximation of the 
tunneling probability for the classical forbidden trajectory 
from inside to outside the horizon is: 
 

Γ ∝ 𝑒𝑒−(2/ℏ)𝐼𝐼𝐼𝐼(𝐼𝐼)                            (3) 
 

where 𝐼𝐼 is the classical action of the trajectory, to leading 
order in ℏ. 
 
II. LYRA BLACK HOLES 
Let us consider a static spherically symmetric metric: 
 

𝑑𝑑𝑠𝑠2 = 𝑒𝑒𝜈𝜈𝑑𝑑𝑑𝑑2 − 𝑒𝑒𝜆𝜆𝑑𝑑𝑑𝑑2 − 𝑟𝑟2(𝑑𝑑𝑑𝑑2 + 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝑑𝑑𝑑𝑑2)   (4) 
 

Sen and Dunn [1] are defined 𝑒𝑒𝜈𝜈 and 𝑒𝑒𝜆𝜆 to obtain solutions 
to the field equations (04) as: 

 

�
𝑒𝑒𝜈𝜈 = 𝐷𝐷 + 𝐶𝐶𝜙𝜙(𝑟𝑟)

𝑒𝑒𝜆𝜆 = 𝐴𝐴𝑟𝑟4(𝜙𝜙′)2

𝐷𝐷+𝐶𝐶𝐶𝐶(𝑟𝑟)
                       (5) 

Where 
𝜙𝜙 = ∑ 𝑎𝑎𝑛𝑛𝑟𝑟−𝑛𝑛∞

𝑛𝑛=0                           (6) 
 

𝐴𝐴,𝐵𝐵,𝐶𝐶 are arbitrary constant. The coefficients 𝑎𝑎𝑛𝑛are given 
by 𝑎𝑎0. 𝑎𝑎3 is arbitrary and 𝑎𝑎2 = 0; 𝑎𝑎𝑛𝑛 (𝑛𝑛 ≻ 0) are determined 
by: 
 
0 = 𝑎𝑎𝑛𝑛−1[(𝐷𝐷 + 𝐶𝐶𝑎𝑎0)(𝑛𝑛 − 1)(𝑛𝑛 − 4)] − 𝐴𝐴𝑎𝑎1 ∑(𝑘𝑘 − 1)(𝑛𝑛 −
𝑘𝑘 + 1)𝑎𝑎𝑘𝑘−1𝑎𝑎𝑛𝑛−𝑘𝑘+1 − 𝐴𝐴∑[(𝑙𝑙 − 1)𝑎𝑎𝑙𝑙−1] [∑(𝑘𝑘 − 1)(𝑛𝑛 − 𝑙𝑙 −
𝑘𝑘 + 3)𝑎𝑎𝑘𝑘−1𝑎𝑎𝑛𝑛−𝑙𝑙−𝑘𝑘+3] −∑(𝑛𝑛 − 1)(2𝑙𝑙 − 𝑛𝑛 − 1)𝑎𝑎𝑛𝑛−𝑙𝑙𝑎𝑎𝑙𝑙−1       

(7) 
 

Retaining only a few terms, we have: 
 

𝐶𝐶2 = 2𝑎𝑎3
𝑎𝑎1

,𝐶𝐶 + 𝐷𝐷𝑎𝑎0 = 1, 𝑎𝑎1 = ± 1
√𝐴𝐴

 , 𝐶𝐶
√𝐴𝐴

= 𝑀𝑀     (8) 
 

Where 𝑀𝑀′ = 2𝑀𝑀 is mass of black hole. 
Thus, one can write 𝑒𝑒𝜈𝜈 and 𝑒𝑒𝜆𝜆 as: 
 

�
𝑒𝑒𝜈𝜈 = 1 − 𝑀𝑀

𝑟𝑟
+ 𝑀𝑀√𝐴𝐴𝑎𝑎3

𝑟𝑟3
+ 𝑀𝑀2√𝐴𝐴𝑎𝑎3

𝑟𝑟4

𝑒𝑒𝜆𝜆 = 𝜎𝜎2

1−𝑀𝑀𝑟𝑟+
𝑀𝑀√𝐴𝐴𝑎𝑎3
𝑟𝑟3

+𝑀𝑀
2√𝐴𝐴𝑎𝑎3
𝑟𝑟4

            (9) 

Where 
 

𝜎𝜎2 = 1 − 6√𝐴𝐴𝑎𝑎3
𝑟𝑟2

− 8𝑀𝑀√𝐴𝐴𝑎𝑎3
𝑟𝑟3

+ 9𝐴𝐴𝑎𝑎3
2

𝑟𝑟4
           (10) 

 
If we take the time component in (04), we can easily prove 
that the singularity locates at r=0, and the horizons 
correspond to 𝑒𝑒𝜈𝜈 = 0; at that moment we get an equation in 
4𝑡𝑡ℎ order, 

𝑟𝑟4 − 𝑀𝑀𝑟𝑟3 + 𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑀𝑀2 = 0             (11) 
 

with 𝑝𝑝 = √𝐴𝐴𝑎𝑎₃.  This means that we will obtain four roots: 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝑟𝑟1 = 1

2 �(𝑎𝑎 − 𝑙𝑙) + �(𝑎𝑎 − 𝑙𝑙)2 − 4(𝑏𝑏 + 𝑚𝑚)�

𝑟𝑟2 = 1
2 �(𝑎𝑎 − 𝑙𝑙) − �(𝑎𝑎 − 𝑙𝑙)2 − 4(𝑏𝑏 + 𝑚𝑚)�

𝑟𝑟3 = 1
2 �(𝑎𝑎 + 𝑙𝑙) + �(𝑎𝑎 + 𝑙𝑙)2 − 4(𝑏𝑏 − 𝑚𝑚)�

𝑟𝑟4 = 1
2 �(𝑎𝑎 + 𝑙𝑙) − �(𝑎𝑎 + 𝑙𝑙)2 − 4(𝑏𝑏 − 𝑚𝑚)�

      (12) 

Where 
 
𝑎𝑎 = 𝑀𝑀

2
, 𝑙𝑙 = −(𝑏𝑏+𝑝𝑝)𝑀𝑀

2√𝑚𝑚
,𝑚𝑚 = 𝑏𝑏2 − 𝑝𝑝𝑀𝑀2, 𝑏𝑏 = 𝑆𝑆

12
+ 5𝑝𝑝𝑀𝑀2

𝑆𝑆
  (13) 

 
With 

𝑆𝑆 = �108𝑝𝑝𝑀𝑀2(𝑝𝑝 + 𝑀𝑀2) +

12𝑝𝑝𝑝𝑝��−1338𝑝𝑝𝑀𝑀2 + 81(𝑀𝑀4 + 𝑝𝑝2)��

1
3

                       (14) 

 
𝑏𝑏 represents the real solution of the equation 
 

𝑏𝑏3 − 5
4𝑝𝑝𝑀𝑀

2𝑏𝑏 − 1
8(𝑝𝑝𝑀𝑀

2 + 𝑝𝑝2𝑀𝑀2) = 0             (15) 
 

the two other solutions are given by the expressions 
 

�
𝑏𝑏′ = − 𝑆𝑆

24
− 5𝑝𝑝𝑀𝑀2

2𝑆𝑆
+ 𝐼𝐼√34 �𝑆𝑆 −

10𝑝𝑝𝑀𝑀2

𝑆𝑆
�

𝑏𝑏′′ = − 𝑆𝑆
24
− 5𝑝𝑝𝑀𝑀2

2𝑆𝑆
− 𝐼𝐼√34 �𝑆𝑆 −

10𝑝𝑝𝑀𝑀2

𝑆𝑆
�
           (16) 

 
    Only two roots between the solutions (12) are positive; see 
(Figure 1) 
 

 
 Figure 1: positive roots of eν 

 
They correspond to the black hole's horizons: 
 

�𝑟𝑟+ = 𝑟𝑟1 = Θ1 + Θ2
𝑟𝑟− = 𝑟𝑟2 = Θ1 − Θ2

                        (17) 

 
Where 

Θ1 = 𝑀𝑀
4
�1 + 𝐵𝐵+𝑝𝑝

𝐵𝐵2−𝑝𝑝𝑀𝑀2�                     (18) 
And 
 

Θ2 = √3
6
�3
4
𝑀𝑀2 � 𝐵𝐵+𝑝𝑝+1

�𝐵𝐵2−𝑝𝑝𝑀𝑀2�
2
− 60𝑝𝑝𝑀𝑀2

𝑆𝑆
− 9(𝐵𝐵2 + 𝑝𝑝𝑀𝑀2) − 𝑆𝑆           

(19)  
where 

𝐵𝐵 = 𝑆𝑆
12

+ 5𝑝𝑝𝑀𝑀2

𝑆𝑆
                            (20) 

 
Using Maple, 𝑟𝑟+ 𝑎𝑎𝑛𝑛𝑑𝑑  𝑟𝑟− are shown respectively in 3-
dimensions with (Figure 2-a) and (Figure 2-b): 

 
Figure 2-a: 3D-variation of 𝑟𝑟+ 

 

 
Figure 2-b: 3D- variation of 𝑟𝑟− 

 
We can also show the variation of the horizons 𝑟𝑟+  and 𝑟𝑟− 
with the curvature parameter of the space-time 𝑝𝑝 and the 
mass of black hole 𝑀𝑀 in two dimensions by (figures 3 -a, -b, 
-c and -d):  
 

 
Figure 3-a : variation of 𝑟𝑟+ with 𝑀𝑀 in different values of 𝑝𝑝 

 

 
Figure 3-b : variation of 𝑟𝑟+ with 𝑝𝑝 in different values of 𝑀𝑀  
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Figure 3-c : variation of 𝑟𝑟− with 𝑝𝑝 in different values of 𝑀𝑀 

 
 

 
Figure 3-d : variation of 𝑟𝑟− with 𝑀𝑀 in different values of 𝑝𝑝 

 
III. DIRAC EQUATION 
Now we calculate the fermion's Hawking radiation from the 
apparent horizons of Lyra black holes via the tunneling 
formalism. For this we use the massless spinor field 
𝛹𝛹(𝑡𝑡, 𝑟𝑟,𝜃𝜃,𝜑𝜑) obeyed the general covariant Dirac equation: 
 

𝑖𝑖𝛾𝛾𝜇𝜇𝐷𝐷𝜇𝜇Ψ(𝑡𝑡, 𝑟𝑟, 𝜃𝜃,𝜙𝜙) = 0                      (21) 
 

where 𝐷𝐷𝜇𝜇 is the spinor covariant derivative is defined by 
 

𝐷𝐷𝜇𝜇 = 𝜕𝜕𝜇𝜇 + 𝑖𝑖
2
𝜔𝜔𝜇𝜇𝑎𝑎𝑎𝑎Σ𝑎𝑎𝑎𝑎                        (22) 

 
and 𝜔𝜔𝜇𝜇 is the spin connection, which can be given in terms 
of the tetrads 𝑒𝑒𝜇𝜇𝑎𝑎. 
The matrices 𝛾𝛾𝜇𝜇 = 𝛾𝛾𝑎𝑎𝑒𝑒𝜇𝜇𝑎𝑎 satisfy the Clifford algebra, 
 

[𝛾𝛾𝑎𝑎, 𝛾𝛾𝑏𝑏]+ = 2𝜂𝜂𝑎𝑎𝑎𝑎Ι4𝑥𝑥4                     (23) 
 

and they are selected as 
 

𝛾𝛾0 = 𝑖𝑖 �𝐼𝐼2𝑥𝑥2 0
0 −𝐼𝐼2𝑥𝑥2

� ,   𝛾𝛾1 = � 0 𝜎𝜎3
𝜎𝜎3 0

�        (24) 

 

𝛾𝛾2 = � 0 𝜎𝜎1
𝜎𝜎1 0

� ,        𝛾𝛾3 = � 0 𝜎𝜎2
𝜎𝜎2 0

�          (25) 
With 
 

𝜎𝜎1 = �0 1
1 0� ,𝜎𝜎2 = �0 −𝑖𝑖

𝑖𝑖 0 �   ,𝜎𝜎3 = �1 0
0 −1�     (26) 

 
𝜎𝜎𝑖𝑖 are the Pauli matrices satisfying the usual relation: 
 

𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗 = 𝐼𝐼2𝑥𝑥2𝛿𝛿𝑖𝑖𝑖𝑖 + 𝑖𝑖𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎𝑘𝑘                  (27) 

𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 1,2,3.  

In order to get the Dirac 𝛾𝛾𝜇𝜇 matrices which are expressed in 
terms of the tetrads, we first define a tetrad of orthogonal 
vector 𝑒𝑒𝜇𝜇𝑎𝑎 where: 

𝜂𝜂𝑎𝑎𝑎𝑎𝑒𝑒𝜇𝜇𝑎𝑎𝑒𝑒𝜈𝜈𝑏𝑏 = 𝑔𝑔𝜇𝜇𝜇𝜇                        (28) 
 

Here (𝑎𝑎, 𝑏𝑏) ≡ (0,1,2,3) and (𝜇𝜇, 𝜈𝜈) ≡ (𝑡𝑡, 𝑟𝑟,𝜃𝜃,𝜑𝜑). The 
simplest choice of tetrads is given in the following matrix 
form: 
 

𝑒𝑒𝜇𝜇𝑎𝑎 = �
𝑒𝑒𝜈𝜈/2    0  0         0

0      𝑒𝑒𝜈𝜈/2  0         0
0            𝑟𝑟  0         0
0           0 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 0

�                    (29) 

 
so 

𝑒𝑒𝑎𝑎
𝜇𝜇 =

⎝

⎛
𝑒𝑒−𝜈𝜈/2    0  0         0
0      𝑒𝑒−𝜈𝜈/2  0         0
0            1𝑟𝑟     0         0
0           0 1

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟      0 ⎠

⎞                 (30) 

 
With theses tetrads, it turns out that : 
 

⎩
⎪
⎨

⎪
⎧𝛾𝛾

𝑡𝑡 = 𝑒𝑒−𝜈𝜈/2𝛾𝛾0

𝛾𝛾𝑟𝑟 = 𝑒𝑒−𝜆𝜆/2𝛾𝛾1

𝛾𝛾𝜃𝜃 = 1
𝑟𝑟
𝛾𝛾2

𝛾𝛾𝜙𝜙 = 1
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝛾𝛾3

                              (31) 

 
we can also write the matrix 𝛾𝛾⁵ in this way: 
 

𝛾𝛾5 ≝ 𝑖𝑖𝛾𝛾𝑡𝑡𝛾𝛾𝑟𝑟𝛾𝛾𝜃𝜃𝛾𝛾𝜙𝜙 = 𝑖𝑖𝑒𝑒−(𝜈𝜈+𝜆𝜆)/2

𝑟𝑟3𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝛾𝛾0𝛾𝛾1𝛾𝛾2𝛾𝛾3          (32) 

 
III.A. HAWKING TEMPERATURE 
To calculate the Hawking temperature, let us employ the 
following ansatz for the spin-up Dirac field: 
 

Ψ↑(𝑡𝑡, 𝑟𝑟, 𝜃𝜃,𝜙𝜙) = �

Γ(𝑡𝑡, 𝑟𝑟, 𝜃𝜃,𝜙𝜙)
0

Ω(𝑡𝑡, 𝑟𝑟,𝜃𝜃,𝜙𝜙)
0

�𝑒𝑒
𝑖𝑖
ℏ𝐼𝐼↑(𝑡𝑡,𝑟𝑟,𝜃𝜃,𝜙𝜙)        (33) 

 
It should be noted that the spin-down case is just analogous. 
In order to apply the WKB approximation, we can plug the 
ansatz (33) into the general covariant Dirac equation (21) [4], 
it turns out that the term in square brackets is of order 𝑂𝑂(ℏ). 
Thus we do not need to work out its pricise form, since in the 
ℏ → 0 limit it vanishes. So the equation (21) becomes: 
 

ℏðΨ↑(𝑡𝑡, 𝑟𝑟, 𝜃𝜃,𝜙𝜙) + 𝜊𝜊(ℏ) = 0                (34) 
 

one can arrive at the expression: 
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𝑒𝑒−𝜈𝜈/2 �

Γ𝜕𝜕𝑡𝑡𝐼𝐼↑
0

−Ω𝜕𝜕𝑡𝑡𝐼𝐼↑
0

� + 𝑒𝑒−𝜆𝜆/2 �

𝑖𝑖Ω𝜕𝜕𝑟𝑟𝐼𝐼↑
0

iΓ𝜕𝜕𝑟𝑟𝐼𝐼↑
0

� + 1
𝑟𝑟
�

0
𝑖𝑖Ω𝜕𝜕𝜃𝜃𝐼𝐼↑

0
iΓ𝜕𝜕𝜃𝜃𝐼𝐼↑

� +

1
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

�

0
−Ω𝜕𝜕𝜙𝜙𝐼𝐼↑

0
−Γ𝜕𝜕𝜙𝜙𝐼𝐼↑

� 𝑒𝑒
𝑖𝑖
ℏ𝐼𝐼↑ = 0                (35) 

 
Hence, we get the following equations system: 
 

⎩
⎪
⎨

⎪
⎧𝑡𝑡:−𝑒𝑒

−𝜈𝜈/2Γ𝜕𝜕𝑡𝑡𝐼𝐼↑ + 𝑖𝑖𝑒𝑒−𝜆𝜆/2Ω𝜕𝜕𝑟𝑟𝐼𝐼↑ = 0
𝑟𝑟: Ω

𝑟𝑟
�𝑖𝑖𝜕𝜕𝜃𝜃𝐼𝐼↑ −

1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜙𝜙𝐼𝐼↑� = 0

𝜃𝜃:−𝑒𝑒−𝜈𝜈/2Γ𝜕𝜕𝑡𝑡𝐼𝐼↑ + 𝑖𝑖𝑒𝑒−𝜆𝜆/2Ω𝜕𝜕𝑟𝑟𝐼𝐼↑ = 0
𝜙𝜙: Γ

𝑟𝑟
�𝑖𝑖𝜕𝜕𝜃𝜃𝐼𝐼↑ −

1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜕𝜕𝜙𝜙𝐼𝐼↑� = 0

           (36) 

 
Here Killing vector is time like 𝜒𝜒 = 𝜕𝜕𝑡𝑡 is enough for this 
static black holes, it plays the role of Kodama vector for 
dynamical case. 
To solve the above system, we use an other ansatz for the 
action 𝐼𝐼↑ : 

𝐼𝐼↑ = ∫𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑅𝑅(𝑟𝑟) + 𝐽𝐽(𝜃𝜃,𝜙𝜙) + 𝐶𝐶             (37) 
 

 C is a constant. 
This choice of 𝐼𝐼↑ leads to the following system of equations: 
 

⎩
⎪
⎨

⎪
⎧ 𝑡𝑡:−𝑒𝑒−𝜈𝜈/2Γ𝐸𝐸 + 𝑖𝑖𝑒𝑒−𝜆𝜆/2Ω𝑅𝑅′(𝑟𝑟) = 0

𝑟𝑟: Ω
𝑟𝑟
�𝑖𝑖𝐽𝐽𝜃𝜃′ (𝜃𝜃,𝜙𝜙) − 1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐽𝐽𝜙𝜙′ (𝜃𝜃,𝜙𝜙)� = 0

𝜃𝜃: 𝑒𝑒−𝜈𝜈/2Ω𝐸𝐸 + 𝑖𝑖𝑒𝑒−𝜆𝜆/2Γ𝑅𝑅′(𝑟𝑟) = 0

𝜙𝜙: Γ
𝑟𝑟
�𝑖𝑖𝐽𝐽𝜃𝜃′ (𝜃𝜃,𝜙𝜙) − 1

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐽𝐽𝜙𝜙′ (𝜃𝜃,𝜙𝜙)� = 0

        (38) 

Where 
 

⎩
⎪
⎨

⎪
⎧ 𝑅𝑅′(𝑟𝑟) = 𝜕𝜕𝜕𝜕(𝑟𝑟)

𝜕𝜕𝜕𝜕

𝐽𝐽𝜃𝜃′ (𝜃𝜃,𝜙𝜙) = 𝜕𝜕𝜕𝜕(𝜃𝜃,𝜙𝜙)
𝜕𝜕𝜕𝜕

𝐽𝐽𝜙𝜙′ (𝜃𝜃,𝜙𝜙) = 𝜕𝜕𝜕𝜕(𝜃𝜃,𝜙𝜙)
𝜕𝜕𝜕𝜕

                       (39) 

 
    For the second and the fourth equations in the system (38), 
we obtain the same results in the spin-down case [7],  they 
imply that 𝐽𝐽(𝜃𝜃,𝜑𝜑) is complex function. However, as regards 
the first and third equations in (38), we can discuss  two 
cases: 
 
1. If Γ = ±iΩ, then we have: 

�∓𝑒𝑒−𝜈𝜈/2𝐸𝐸 + 𝑒𝑒−𝜆𝜆/2𝑅𝑅′(𝑟𝑟)�Ω = 0                (40) 
 

which implies that: 
 

𝑅𝑅′(𝑟𝑟) = ± 𝑒𝑒−𝜈𝜈/2

𝑒𝑒−𝜆𝜆/2 𝐸𝐸                           (41) 
 

2. If Γ=±Ω, then: 

𝑅𝑅′(𝑟𝑟) = 0                                (41) 
 

The case (41) corresponds to incoming particle absorbed in 
the classical limit with probability 𝒫𝒫𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1  [4-5], when 
the first case describes the emission process with the 
probability: 

Γ ∝ 𝑒𝑒−
2
ℏ𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟)                            (42) 

 
For that we need the imaginary part of the function 𝑅𝑅(𝑟𝑟), thus 
we have: 
 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟) = ±𝐸𝐸𝐸𝐸𝐸𝐸 ∫ 𝑒𝑒𝜆𝜆/2

𝑒𝑒𝜈𝜈/2 𝑑𝑑𝑑𝑑 = ±𝐸𝐸𝐸𝐸𝐸𝐸 ∫𝜎𝜎(𝑟𝑟)
𝑒𝑒𝜈𝜈

𝑑𝑑𝑑𝑑     (43) 
 

if we replace 𝑒𝑒𝜈𝜈 by its expression, we can write: 
 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟) = ±𝐸𝐸𝐸𝐸𝐸𝐸 ∫ 𝑟𝑟4𝜎𝜎(𝑟𝑟)
(𝑟𝑟−𝑟𝑟+)(𝑟𝑟−𝑟𝑟−)𝐻𝐻(𝑟𝑟)

𝑑𝑑𝑑𝑑           (44) 
 

where 
𝐻𝐻(𝑟𝑟) = 𝑟𝑟2 + (𝑟𝑟++𝑟𝑟− − 𝑀𝑀)𝑟𝑟 + 𝑝𝑝𝑀𝑀2

𝑟𝑟+𝑟𝑟−
𝑟𝑟 + 𝑝𝑝𝑀𝑀2      (45) 

 
Using Residus theorem, we get : 
 

𝑅𝑅(𝑟𝑟) = 2𝑖𝑖𝑖𝑖[𝑅𝑅𝑒𝑒𝑒𝑒(𝑅𝑅(𝑟𝑟), 𝑟𝑟+) + 𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅(𝑟𝑟), 𝑟𝑟−)]      (46) 
 

one can easily find 𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟) where we have two poles located 
at the horizons 𝑟𝑟₊ and 𝑟𝑟₋ : 
 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟) = ± 2𝜋𝜋𝜋𝜋
𝑟𝑟+−𝑟𝑟−

�𝑟𝑟+
4𝜎𝜎(𝑟𝑟+)
𝐻𝐻(𝑟𝑟+)

− 𝑟𝑟−4𝜎𝜎(𝑟𝑟−)
𝐻𝐻(𝑟𝑟−)

�            (47) 
where 
 

⎩
⎨

⎧𝜎𝜎(𝑟𝑟+) = �1 − 6 𝑝𝑝
𝑟𝑟+2
− 8 𝑝𝑝𝑝𝑝

𝑟𝑟+3
+ 9 𝑝𝑝2

𝑟𝑟+4

𝜎𝜎(𝑟𝑟−) = �1 − 6 𝑝𝑝
𝑟𝑟−2
− 8 𝑝𝑝𝑝𝑝

𝑟𝑟−3
+ 9 𝑝𝑝2

𝑟𝑟−4

              (48) 

 
Finally, taking the definition (42), we write: 
 

𝐸𝐸
𝑇𝑇𝑇𝑇

= ±2
ℏ𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟)                            (49) 

 
Here we can Distinguish two cases of the Hawking 
temperature: 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   caused only by 𝑟𝑟₋ and 𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  caused 
by both of the horizons 𝑟𝑟₊ and 𝑟𝑟₋: 
 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ℏ
4𝜋𝜋
�
𝑟𝑟−2−

𝑀𝑀
2

𝑟𝑟−3𝜎𝜎(𝑟𝑟−)
�                       (50) 

 
or: 
 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ℏ
4𝜋𝜋𝜋𝜋(𝑟𝑟−)

� 1
𝑟𝑟−
− 𝑀𝑀

𝑟𝑟−3
�                   (51) 

and 
 

𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = ∓ ℏ
4𝜋𝜋
�

(𝑟𝑟+−𝑟𝑟−)�𝑟𝑟+2−
𝑀𝑀
2 ��𝑟𝑟−

2−𝑀𝑀2 �

𝑟𝑟+4𝜎𝜎(𝑟𝑟+)�𝑟𝑟−2−
𝑀𝑀
2 �−𝑟𝑟−

4𝜎𝜎(𝑟𝑟−)�𝑟𝑟+2−
𝑀𝑀
2 �
�      (52) 

 
Using always the maple, we draw the variation of the 
Hawking temperature with the parameter of  Lyra geometry 
and with the mass of the  corresponding black hole 
presented in  (Figure 4). 
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Figure 4 : Hawking radiation near Lyra black hole 

 
III.B. PARTICULAR CASE 
    In this case, we consider one horizon for the Lyra black 
hole [1], i.e: the equation (11) has only one double positive 
root located at: 
 

𝑟𝑟0 = 12+�𝑝𝑝2+204𝑝𝑝𝑀𝑀2

6𝑀𝑀
                       (53) 

 
for 
 

72𝑝𝑝3 + 63𝑝𝑝2𝑀𝑀 + �144𝑝𝑝2 + 204𝑝𝑝𝑀𝑀2(6𝑝𝑝2 + 𝑝𝑝𝑀𝑀2) =
9𝑝𝑝𝑝𝑝                                                                                (54) 

 
in this case, the singularity is still at 𝑟𝑟 = 0. 
To calculate the Hawking temperature for the Lyra black 
holes with only one double positive horizon, the equation 
(43) becomes: 
 

    𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟) = ±𝐸𝐸𝐸𝐸𝐸𝐸 ∫ 𝑟𝑟4𝜎𝜎(𝑟𝑟)
(𝑟𝑟−𝑟𝑟0)𝐹𝐹(𝑟𝑟)

𝑑𝑑𝑑𝑑            (55) 
 

where 
𝐹𝐹(𝑟𝑟) = 𝑟𝑟2 + (2𝑟𝑟0 − 𝑀𝑀)𝑟𝑟 + 𝑝𝑝𝑀𝑀2

𝑟𝑟0
2              (56) 

 
after integrating (55), we get: 
 

𝑅𝑅(𝑟𝑟) = ±2𝜋𝜋𝜋𝜋 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑟𝑟

4𝜎𝜎(𝑟𝑟)
𝐹𝐹(𝑟𝑟)

��
𝑟𝑟=𝑟𝑟0

           (57) 

this implies: 
 

𝑇𝑇𝑇𝑇 = ∓2𝜋𝜋
𝑟𝑟0
3𝜎𝜎2(𝑟𝑟0)[4+𝑟𝑟0(4𝑟𝑟0)−𝑀𝑀]+2𝑟𝑟0�3𝑝𝑝−

6𝑝𝑝𝑝𝑝
𝑟𝑟0

−9𝑝𝑝𝑝𝑝
𝑟𝑟0
2 �

𝜎𝜎(𝑟𝑟0)𝐹𝐹2(𝑟𝑟0)
   (58) 

 
CONCLUSION 

 
We conclude that the Hawking radiation near the black hole's 
apparent horizons depends of the space-time geometry (Lyra 
geometry) and the black hole’s properties (mass). 
With the Lyra geometry, we find the same results as the 
riemannien geometry ; the Hawking temperature increases by 
the increase of  the mass of the black hole.    
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