
Sciences & Technology Vol 4 – N°1, June 2019, pp. 25-34 
 

 © Frères Mentouri University, Constantine, Algeria, 2019. 

A BAYESIAN PREDICTIVE PROCEDURE FOR TWO STEPS 
EXPERIMENTAL TRIALS. 

 Submited on 25/10/2016 – Accepted on 05/05/2019 
 
Abstract  

Bayesian predictive procedures give the researcher a very appealing method to evaluate 
the chances that the experiment will end up showing a conclusive result, or on the contrary 
an inconclusive one. The prediction can be explicitly based on either the hypothesis used to 
monitor the experiment expressed either in terms of prior distribution, on partially available 
data, or on both. In this paper, we propose a Bayesian predictive methodology based on two 
steps which can be used to develop an adaptive design for the experimental trials. This 
procedure does not require intensive computation and comprehensive simulations. We have 
used the non-informative prior to give evidence on the objectivity of the experimental data. 
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models, stopping rule. 
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INTRODUCTION 
The Bayesian approach brings a major flexibility to the 
statistical methodology of the experimental trials. A major 
strength of the Bayesian paradigm is the ease with which 
one can make predictions about future observations. In 
particular, we are interested in using this approach aiming 
at prediction in the context of experimental trials. The role 
which the predictive probability plays in the design and 
monitoring trials is important in several fields (reliability 
of systems medicine, biology, ecology,...) ([18], [9]). 

Bayesian predictive procedures have made an important 
contribution to inference and data analysis. Within this 
perspective, Bayesian predictive probabilities are a 
particularly useful device to communicate with the 
investigator. They give them a very appealing method to 
answer essential questions such as: "Given the current data, 
what is the chance that the final result will be in some sense 
conclusive, or on the contrary inconclusive? This question 
is unconditional because it requires consideration of all 
possible values of parameters. Whereas, traditional 
frequentist practice does not address these questions, 
predictive probabilities give them direct and natural 
answers. In particular, predictive procedures can be used to 
illustrate the effects of planning an experiment with a very 
small sample size, and to aid in the decision to abandon an 
experiment early. 

 For example, in phase II cancer trials, it is undesirable to 
stop a study early when the test drug is promising, and it is 
desirable to terminate the study as early as possible when 
the test treatment is not effective due to ethical 
consideration. For this purpose, a multiple stage design 
single arm trial is often employed to determine whether the 
test treatment is promising for further testing ([5]; [3]; [8]).  

The methodology adapted to the context of clinical trials is 
characterized by many constraints and unsatisfactions and 

forms the subject of a deep and continuous development 
([13]; [2]; [10]; [8]).  One of the reasons for such interest 
is likely to emanate from the fact that public health 
authorities are responsible for the permission of putting the 
drugs into market and they play a primordial role in the 
elaboration of a rigorous methodology of clinical trials, 
taking into consideration the views of all the actors in this 
field (industries, public institutes of research, hospitals and 
scientific journals). 

The primary goal clinical trial is to evaluate the efficiency 
and the tolerance of a new medical treatment. They are 
characterized by complex actions that cannot be readily 
modeled and they do not depend solely on statistical 
considerations (see for example [3]). In this situation, we, 
often, get primary experimental information in the form of 
step I, then we need to confirm some results ([3]; [8]; [9]). 
Formally, we consider the following situation: Using the 
data of the first sample, we can plan an experiment (a new 
sample) in a way to have good chances to get the intended 
conclusion if the experimentation is not discarded. 

The main objective of this paper is to provide a hybrid 
Bayesian-frequentist procedure for two stages designs to 
test the efficacy of a new therapy. This procedure is based 
on the concept of the index of satisfaction which is a 
decreasing function of the p-value, and we envisage, given 
the available data, to calculate a predicted satisfaction of 
this index by considering the previous observations using 
Bayesian approach.  Many authors have advocate to use 
Indexes in such situation as Lecoutre et al:1995, Merabet 
,2004, Merabet and Labdaoui, 2015, Djeridi and Merabet, 
2015, ([13][15][16][6])  because of their simplicity and 
flexibility in measuring the degree of satisfaction in the 
case of obtaining a significant result. We used this index to 
find a stopping rule for designing a phase II clinical trials. 
In this situation, we are led to a Bayesian approach butl 
with a frequentist test in mind.  
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Bayesian posterior probability, which is the probability 
that the parameter is contained within a meaningful region, 
is the best tool to answer the following question addressed 
by interim monitoring:" Is there convincing evidence in 
favor of the null alternative hypothesis?" On the other way, 
using stochastic curtailment methods such as, predictive 
probability and prediction of satisfaction, we give answers 
to the question: "Is the trial likely to show convincing 
evidence in favor of the alternative hypothesis if additional 
data are collected?" Because we deal, here, with the 
prediction of what evidence will be available at later stages 
in the study ([18]). If the futility is defined as a trial being 
unlikely to achieve its objective, then it is inherently a 
prediction problem and is best addressed using prediction 
of satisfaction. 

To illustrate our procedure, we studied several exponential 
models choosing a non-informative prior to highlight the 
analysis objectivity of the experimental data. It is usual in 
experimental research to assume non-informative priors, as 
a study is expected to bring evidence by itself ([12]). 
Bayesians use at or otherwise improper non-informative 
priors in situations where prior knowledge is vague relative 
to the information in the likelihood, or in settings where we 
want data (and not the prior) to dominate the determination 
of the posterior ([13]). Furthermore, the Jeffrey's priors are 
a particular choice because it is an exact counterpart of the 
arbitrariness involved within the frequentist approach 
(section 2.3). The numeric calculations and the simulation 
results are presented in the form of binary outcomes for 
phase II clinical trials and Gaussian model. 

2. STATISTIC METHODS 
       Bearing in mind that, that the experimental context 
consists of two successive experimentations, of results 
𝜔𝜔′ ∈ 𝛺𝛺′ and 𝜔𝜔′′ ∈ 𝛺𝛺′′, which are in general carried out 
independently. Their distributions built in the framework 
of a well established model, depend on a parameter 𝜃𝜃 ∈ 𝛩𝛩, 
only  𝜔𝜔" is used to found the official conclusion of the 
study and to determine the user’s satisfaction denoted 
𝜙𝜙(𝜔𝜔") (and on the choice of the decreasing function L 
about which we will come back in 2.4). But, on the basis 
of the result 𝜔𝜔′ of first step clinical trial, it is useful to 
anticipate what the satisfaction will be after the second 
step. In our study, this prediction is carried out in a 
Bayesian context, i.e., based on the choice of a prior 
probability on 𝛩𝛩.  

We denote: 

 𝑃𝑃Θ: Prior probability on 𝛩𝛩. 

 𝑃𝑃Θ𝜔𝜔′: Posterior probability on 𝛩𝛩, based on the result of the 
first step. 

 𝑃𝑃Ω"𝜃𝜃 : Sampling distribution of the second step. 

𝑃𝑃Ω"𝜔𝜔′: Probability on 𝜔𝜔", conditioned by the result of the first 
step. 

 

 

2.1 General Case: 
 In this experimental context, we will introduce the 
concept of the index of satisfaction relative to a hypothesis 
test where the null hypothesis is of type 𝜃𝜃 ≤ 𝜃𝜃0, in a 
framework where such a test may be constructed using a 
reasonable test function. 

 Let us suppose a model (𝑃𝑃𝜃𝜃)𝜃𝜃∈Θ_and test a null 
hypothesis Θ0 versus an alternative  Θ1 , defined by an 
application  Ψ(:Θ → 𝐼𝐼𝐼𝐼). We suppose that a point 𝑡𝑡0  
exists so that: 

𝜽𝜽 ∈ 𝚯𝚯𝟎𝟎 <=>  𝜳𝜳(𝜽𝜽) ≤ 𝒕𝒕𝟎𝟎 

Otherwise, let us suppose that we have a real application 
𝝃𝝃(𝛀𝛀" → 𝑰𝑰𝑰𝑰) such that: 

𝚿𝚿(𝛉𝛉𝟏𝟏) < 𝜳𝜳(𝛉𝛉𝟐𝟐) =>  ∀𝒕𝒕,𝐏𝐏𝛉𝛉𝟏𝟏[𝝃𝝃 ≤ 𝒕𝒕] ≥ 𝑷𝑷𝜽𝜽₂[𝝃𝝃 ≤ 𝒕𝒕] 

Then a test of a level 𝛂𝛂, of 𝚯𝚯₀ versus 𝚯𝚯₁(= {𝛉𝛉;  𝚿𝚿(𝛉𝛉) >
𝒕𝒕₀}) is defined by rejecting the hypothesis if the 
experimental result, y, verifies that 𝛏𝛏(𝐲𝐲) > 𝒈𝒈(𝜶𝜶), 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 
𝐠𝐠(𝛂𝛂) is the (1-α)-quantile of the distribution of 𝛏𝛏 when 
𝚿𝚿(𝛉𝛉₀) = 𝐭𝐭₀. 

Indeed, the critical region, C, of this test, is then the set of 
the observations y, such that 𝛏𝛏(𝐲𝐲) > 𝒈𝒈(𝜶𝜶) and because of 
the stochastic creasing of the distributions of ξ, we have, 
for all θ₀ such that 𝚿𝚿(𝛉𝛉₀) = 𝐭𝐭₀, 

∀𝛉𝛉 ∈ 𝚯𝚯₀,𝐏𝐏𝛉𝛉(𝐂𝐂) ≤ 𝐏𝐏𝛉𝛉₀(𝐂𝐂) ≤ 𝛂𝛂  

Moreover, if 𝛉𝛉₁ ∈ 𝚯𝚯₁ and 𝛉𝛉₂ ∈ 𝚯𝚯₁ with 𝚿𝚿(𝛉𝛉₁) < 𝜳𝜳(𝜽𝜽₂),  

then 𝐏𝐏𝛉𝛉₁(𝐂𝐂) ≤ 𝐏𝐏𝛉𝛉₂(𝐂𝐂) which means that the power function 
increases with 𝚿𝚿(𝛉𝛉). 

2.2 Advantage of the p-value 
 The p-value is a measure of statistical evidence that 
appears in virtually all experimental research papers. Its 
interpretation is made extraordinarily difficult because it is 
not part of any formal system of statistical inference. As a 
result, the p-value's inferential meaning is widely and often 
wildly misconstrued (see for example [1]), a fact that has 
been pointed out in innumerable papers and books 
appearing since at least the 1940s. S. Goodman (2008) [7] 
reviewed a dozen of these common misinterpretations and 
explained why each is wrong. He, also, reviewed the 
possible consequences of these improper understandings or 
representations of its meaning. 

      The p-value is defined as the probability, under the 
assumption of no effect or no difference (the null 
hypothesis), of obtaining a result equal to or more extreme 
than what was actually observed (Fig. 1). 

         The curve represents the probability of every 
observed outcome under the null hypothesis. The p-value 
is the probability of the observed outcome (𝒙𝒙) plus all 
“more extreme” outcomes, represented by the shaded “tail 
area”. 
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Figure 1: Graphical depiction of the definition of a (one-

sided) p-value 

In some cases particularly in the two sided testing 
problems, there are difficulties in defining a p-value. To 
eliminate these difficulties, we follow Fisher and define it 
as follows: 

Definition1: The p-value associated with a test is the 
smallest significance level 𝜶𝜶 for which the null hypothesis 
is rejected. That mean, if 

𝒑𝒑(𝒙𝒙) = 𝐢𝐢𝐢𝐢𝐢𝐢 {𝜶𝜶;𝒙𝒙 ∈ 𝛀𝛀𝜶𝜶} 

Which eliminates ambiguities (as long as 𝛀𝛀𝜶𝜶 is specified 
for each 𝜶𝜶). 

Remark 2: According to Hwang et al. (1992) [11], the p-
value is admissible in the one sided tests under some 
conditions, and it is a minimax rule under absolute error 
loss. They presented a number of examples in which the p-
value is generalized Bayes, hence admissible under 
squared error loss function that it is a reasonable measure 
of accuracy. P-values are thus adaptive procedures that can 
be acceptable from a frequentist point of view (17). 

2.3 A brief comment about the choice of the prior 
distribution 
 A prior distribution captures all of the information 
known about the parameters $\theta$ before we collect 
data.  

    Along with the likelihood function, it is one of the two 
key components of a Bayesian model. 

   The traditional p-value is based on the samples that are 
“more extreme” than the observed data (under the null 
hypothesis). 

   But, for discrete data, it depends on whether include the 
observed data or not. For instance, the usual binomial test, 
for example, is conservative. But if the observed data are 
excluded, the test becomes liberal (12). A typical solution 
to overcome this problem consists in considering non-
informative prior distributions ([17], [9]).  

     These priors cannot be expected to represent exactly 
total ignorance about the problem at hand, but should rather 
be taken as reference or default priors, upon which 
everyone could fall back when the prior information is 
missing. Then, these particular prior distributions must be 
derived from the sample distribution, since this is the only 
available information. 

   While there are a number of formalisms for developing 
non-informative prior distributions, one of the most 
common uses Jeffreys’ rule, which results in a distribution 

often called a Jeffreys’ prior. Define the expected Fisher 
information as:  

𝑰𝑰(𝜽𝜽) = −𝑬𝑬 �
𝒅𝒅𝟐𝟐𝐥𝐥𝐥𝐥𝐥𝐥 (𝒇𝒇(𝒚𝒚|𝜽𝜽))

𝒅𝒅𝜽𝜽𝟐𝟐
� 

Jeffreys’ rule defines a non-informative prior as  

𝒇𝒇(𝜽𝜽) = [𝑰𝑰(𝜽𝜽)]𝟏𝟏/𝟐𝟐 

    More fundamentally, the choice of a prior depending on 
Fisher information is justified by the fact that 𝑰𝑰(𝜽𝜽) is 
widely accepted as an indicator of the amount of 
information brought by the model (or the observation) 
about 𝜽𝜽 ([17]). 

2.4 Index of satisfaction 
 This notion finds its origins in situations where the 
statistician, who carries out a test, "wishes" to detect a 
significant effect, i.e., to reject the null hypothesis 𝑯𝑯𝟎𝟎. 
Correspondingly, this statistician is, especially, more 
satisfied if, in function of the experimental results, this 
effect seems to be more significant. 

2.4.1 Rudimentary index: 
 Being 𝜶𝜶 fixed, let a test of level 𝜶𝜶 be defined by a 
critical region 𝛀𝛀𝟏𝟏

"(𝜶𝜶). A first index of satisfaction is defined 
by:  

𝝓𝝓(𝝎𝝎") = 𝟏𝟏𝛀𝛀𝟏𝟏"(𝜶𝜶)(𝝎𝝎") 

At a fixed 𝝎𝝎′, the prediction is: 

𝝅𝝅(𝝎𝝎′) = 𝑷𝑷𝛀𝛀"
𝝎𝝎′�𝛀𝛀𝟏𝟏

"(𝜶𝜶)� 

= � 𝑷𝑷𝛀𝛀"
𝛉𝛉 (

𝛀𝛀𝟏𝟏
"(𝜶𝜶)

𝛀𝛀𝟏𝟏
"(𝜶𝜶))𝑷𝑷𝚯𝚯𝝎𝝎

′(𝐝𝐝𝐝𝐝) 

Where 𝑷𝑷𝛀𝛀"
𝛉𝛉 (𝛀𝛀𝟏𝟏

"(𝜶𝜶)) is the power of the test for the value of  
𝜽𝜽. 

 The weakness of this index is that it expresses a 
satisfaction in "all or nothing" fashions (significant or not 
significant). 

2.4.2 Improved index  
 It is more interesting to take into account to what level 
will the result always appear significant. This is what the 
users highlight by giving, at the end of the test procedure, 
not only the conclusion in terms of "all nor thing" but also 
the smaller value of threshold for which the obtained result 
will be considered significant that is, from the point of view 
of the theory of the test, the p-value given in definition 1, 
and it is in our case 

𝒑𝒑 = 𝑷𝑷𝜽𝜽𝟎𝟎�𝝃𝝃 > 𝝃𝝃(𝝎𝝎′′)� 

An index of satisfaction (IS), for the considered test of level 
𝜶𝜶, is then defined naturally by an application from the 
results set in 𝑰𝑰𝑰𝑰+ such that: 

- Takes the value 𝟎𝟎 if we don't reject the hypothesis, i.e., if 
𝝃𝝃(𝒚𝒚) ≤ 𝒈𝒈(𝜶𝜶), 
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    - And if 𝛏𝛏(𝐲𝐲) > 𝒈𝒈(𝜶𝜶), is a decreasing function of  

𝑷𝑷𝜽𝜽₀(𝝃𝝃 > 𝝃𝝃(𝒚𝒚)), which we denote  

𝑳𝑳(𝑷𝑷𝜽𝜽₀(𝝃𝝃 > 𝝃𝝃(𝒚𝒚)) = 𝑳𝑳(𝟏𝟏 − 𝑭𝑭𝜽𝜽₀(𝝃𝝃(𝒚𝒚))) 

 where 𝑭𝑭𝜽𝜽₀ is the distribution of ξ at the frontier such as 
𝜳𝜳(𝜽𝜽₀) = 𝒕𝒕₀. 

   Remark 3: A rudimentary index is the indicator function 
of the critical region (which was studied by Grouin 
(1994)[13]) but it does not take into account of the "p-
value". 

2.5. Prediction of satisfaction 

      Being 𝛼𝛼 fixed, let a test of level 𝛼𝛼 be defined by a 

critical region Ω1
′′(𝛼𝛼). It is more interesting to take into 

account to what level will be the results always appear 
significant. We will use the new index of satisfaction 
(mentioned in section 2.4.2), wich  was studied by Merabet 
H. (2004)[15], and defined for the bayesian tests, based on 
the same prior 𝑃𝑃Θ, as: 

𝜙𝜙(𝜔𝜔′′)

= �
0                                                 𝑠𝑠𝑠𝑠   𝜔𝜔′′ ∈ Ω0

′′(𝛼𝛼) 

1 − 𝑖𝑖𝑖𝑖𝑖𝑖 �𝛽𝛽;𝜔𝜔′′ ∈ Ω1
′′(𝛽𝛽)�      𝑠𝑠𝑠𝑠   𝜔𝜔′′ ∈ Ω1

′′(𝛼𝛼) 
(1) 

A standard situation is that where an application 
𝜓𝜓(Θ → ℝ) is such as Θ0 = {𝜃𝜃;  𝜓𝜓(𝜃𝜃) ≤ 𝑡𝑡0} and 
where it also exists 𝜉𝜉(Ω′′ → ℝ) and 𝑔𝑔(]0,1[ → ℝ) 
such that  

Ω1
′′(𝛼𝛼) = {𝜔𝜔′′;  𝜉𝜉(𝜔𝜔′′) ≤ 𝑔𝑔(𝛼𝛼)} 

Where 𝑔𝑔(𝛼𝛼) is the (1 − 𝛼𝛼) quantile of the distribution 
of  𝜉𝜉  when 𝜓𝜓(𝜃𝜃0) = 𝑡𝑡0.  

Using the p-value; 

𝒑𝒑(𝝎𝝎′′) = 𝑷𝑷𝜽𝜽𝟎𝟎�𝝃𝝃 > 𝝃𝝃(𝝎𝝎′′)�, 

the index of satisfaction is thus defined naturally as 

𝜙𝜙(𝜔𝜔′′) = �
0                 𝑖𝑖𝑖𝑖          𝜉𝜉(𝜔𝜔′′) ≤ 𝑔𝑔(𝛼𝛼) 
𝐿𝐿�𝑝𝑝(𝜔𝜔′′)�      𝑖𝑖𝑖𝑖        𝜉𝜉(𝜔𝜔′′) > 𝑔𝑔(𝛼𝛼)   (2) 

Where 𝐿𝐿 is a decreasing function.  

Let 𝐹𝐹𝜃𝜃0be the distribution of 𝜉𝜉 at the frontier, i. e., for any 
𝜃𝜃0 such as 𝜓𝜓( 𝜃𝜃0) = 𝑡𝑡0, the index of satisfaction is 
defined by: 
𝜙𝜙(𝜔𝜔′′) =

�
0                               𝑖𝑖𝑖𝑖     𝑝𝑝(𝜔𝜔′′) ≥ 1 − 𝛼𝛼 
𝐿𝐿 �1 − 𝐹𝐹𝜃𝜃0(𝜔𝜔′′)�                       𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒       

          (2) 
The prediction of satisfaction is then given by: 

𝝅𝝅(𝝎𝝎′) = � 𝝓𝝓(𝝎𝝎′′)
𝛀𝛀𝟏𝟏
′′(𝜶𝜶)

𝐏𝐏𝛀𝛀′′
𝛚𝛚′ (𝐝𝐝𝛚𝛚′′) 

= � �� 𝝓𝝓(𝝎𝝎")𝑷𝑷𝜴𝜴′′𝜽𝜽 (𝒅𝒅𝒅𝒅′′)
𝛀𝛀𝟏𝟏
′′(𝜶𝜶)

�
𝜣𝜣

𝑷𝑷𝜣𝜣𝝎𝝎′(𝒅𝒅𝒅𝒅) 

= � 𝑳𝑳�𝟏𝟏 −  𝑭𝑭𝜽𝜽𝟎𝟎(𝝎𝝎′′)�𝑷𝑷𝜴𝜴′′𝝎𝝎′ (𝒅𝒅𝒅𝒅′′)
{𝝎𝝎′′;𝝃𝝃(𝝎𝝎′′)>𝒈𝒈(𝜶𝜶) }

 

It is noticed that 

 ∫ 𝝓𝝓(𝝎𝝎")𝑷𝑷𝜴𝜴′′𝜽𝜽 (𝒅𝒅𝒅𝒅′′)𝛀𝛀𝟏𝟏
′′(𝜶𝜶)  generalizes the power of the test 

in the logic of the index of satisfaction proposed. 

    We can generalize this procedure to a family of limited 
indexes defined by  

𝑳𝑳(𝒑𝒑) = (𝟏𝟏 − 𝒑𝒑)𝒍𝒍, where 𝒍𝒍 ≥ 𝟎𝟎.  

It is preferable to choose limited indexes because they are 
easy to interpret. 

Remark 4:  

1. If 𝒍𝒍 = 𝟏𝟏,𝟏𝟏 − 𝝓𝝓(𝝎𝝎′′) is the p-value. 

2. In the case where 𝒍𝒍 = 𝟎𝟎, one finds the indicator function 
of the critical region which is the rudimentary index of 
Grouin ([13]). 

3. APPLICATION  

 Djeridi and Merabet  (2016) [6] proposed to calculate 
explicitly or numerically the prediction of satisfaction in 
several exponential models: binomial, poisson, gamma and 
gaussian for 𝐿𝐿(𝑝𝑝) = (1 − 𝑝𝑝) in the case of a test of 
threshold, 𝛼𝛼 where the null hypothesis is 

𝐻𝐻0:𝜃𝜃 ≤ 𝜃𝜃0. We are led to a Bayesian approach, ( but still 
with a frequentist test in mind) when the prior distribution 
of the unknown parameter 𝜃𝜃is non-informative. In this 
case, we choose the Jeffreys‘ prior (section 2.3). 

 3.1 Binomial distribution 
Let us suppose that all random variables are independent 
𝑋𝑋′𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘) and 𝑋𝑋′′𝑗𝑗 (1 ≤ 𝑗𝑗 ≤ 𝑛𝑛) has a 
bernoulli distribution 𝐵𝐵(𝜃𝜃 ) , where 𝜃𝜃  is unknown. 

Then 𝜔𝜔′ = ∑ 𝑋𝑋′𝑖𝑖𝑘𝑘
𝑖𝑖=1  has a binomial distribution 

𝐵𝐵(𝑘𝑘,𝜃𝜃 ) and 𝜔𝜔′′ = ∑ 𝑋𝑋′′𝑗𝑗𝑛𝑛
𝑗𝑗=1  has a binomial 

distribution 𝐵𝐵(𝑛𝑛,𝜃𝜃 ).  

By choosing the non-informative prior of Jeffrey's for 𝜃𝜃: 

𝑓𝑓(𝜃𝜃) = 𝜃𝜃−
1
2(1 − 𝜃𝜃)−

1
2 ∝ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �

1
2

,
1
2
� 

The posterior density of 𝜃𝜃 given 𝜔𝜔′ is a beta distribution 

 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝜔𝜔′ + 1
2

,𝑘𝑘 − 𝜔𝜔′ + 1
2
� ([10]), and the predictive 

of 𝜔𝜔′′ given 𝜔𝜔′ is given by:  
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𝜈𝜈(𝜔𝜔′′|𝜔𝜔′)

=
𝐶𝐶𝑛𝑛𝜔𝜔′′𝛽𝛽 �𝜔𝜔′′ + 𝜔𝜔′ + 1

2 ,𝑛𝑛 + 𝑘𝑘 − (𝜔𝜔′+ 𝜔𝜔′′) + 1
2�

𝛽𝛽 �𝜔𝜔′ + 1
2 ,𝑘𝑘 − 𝜔𝜔′+ 1

2�
 

Where 𝛽𝛽(𝑥𝑥,𝑦𝑦) = Γ(𝑥𝑥)Γ(𝑦𝑦)
Γ(𝑥𝑥+𝑦𝑦)   

𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶𝑥𝑥
𝑦𝑦 = 𝑥𝑥!

𝑦𝑦!(𝑥𝑥−𝑦𝑦)!
 .  

Then, the index of satisfaction (IS) is: 

𝜙𝜙(𝜔𝜔′′)

=

⎩
⎨

⎧ 0                                      𝑖𝑖𝑖𝑖     𝜔𝜔′′ < 𝑞𝑞0 

� 𝐶𝐶𝑁𝑁𝑡𝑡𝜃𝜃0
𝑡𝑡(1 − 𝜃𝜃0)𝑁𝑁−𝑡𝑡

𝜔𝜔′′−1

𝑡𝑡=0

𝑖𝑖𝑖𝑖 𝜔𝜔′′𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎  𝜔𝜔′′ ≥ 𝑞𝑞0      
 

 
Where  

𝑞𝑞0 = 𝑖𝑖𝑖𝑖𝑖𝑖 �𝑢𝑢;�𝐶𝐶𝑁𝑁𝑡𝑡𝜃𝜃0
𝑡𝑡(1 − 𝜃𝜃0)𝑁𝑁−𝑡𝑡

𝑁𝑁

𝑡𝑡=𝑢𝑢

≤ 𝛼𝛼 � 

and, the prediction of satisfaction (PIS) is:  

π�ω′� = � � � 𝐶𝐶𝑁𝑁𝑡𝑡 𝜃𝜃0
𝑡𝑡(1

𝜔𝜔′′−1

𝑡𝑡=0

N

ω′′=q0

− 𝜃𝜃0)𝑁𝑁−𝑡𝑡�𝜈𝜈�𝜔𝜔′′|𝜔𝜔′�  

= � � � 𝐶𝐶𝑁𝑁𝑡𝑡 𝜃𝜃0
𝑡𝑡(1 − 𝜃𝜃0)𝑁𝑁−𝑡𝑡

𝜔𝜔′′−1

𝑡𝑡=0

� 
N

ω′′=q0

×
𝐶𝐶𝑁𝑁𝜔𝜔′′𝛽𝛽 �𝜔𝜔′′ + 𝜔𝜔′ + 1

2 ,𝑁𝑁 + 𝐾𝐾 − (𝜔𝜔′ + 𝜔𝜔′′) + 1
2�

𝛽𝛽 �𝜔𝜔′ + 1
2 ,𝐾𝐾 − 𝜔𝜔′ + 1

2�
 

3.2 Poisson Sampling  
 Let us suppose that 𝑋𝑋′𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛) and 𝑋𝑋′′𝑗𝑗  (1 ≤ 𝑗𝑗 ≤

𝑘𝑘) are i.i.d. real random variables of Poisson 
distribution 𝒫𝒫(𝜃𝜃), where 𝜃𝜃  is unknown. 

Then 𝜔𝜔′ = ∑ 𝑋𝑋′𝑖𝑖𝑛𝑛
𝑖𝑖=1  have a Poison distribution 𝒫𝒫(𝑛𝑛𝑛𝑛 ) 

and 𝜔𝜔′′ = ∑ 𝑋𝑋′′𝑗𝑗𝑘𝑘
𝑗𝑗=1  have a Poisson distribution 𝐵𝐵(𝑘𝑘𝑘𝑘 ). If 

𝜃𝜃 has a non informative prior 𝑓𝑓(𝜃𝜃) = 𝜃𝜃−1 

Then the posterior density of 𝜃𝜃 given 𝜔𝜔′ will be 

𝑓𝑓(𝜃𝜃|𝜔𝜔′) ∝ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝜔𝜔′,𝑛𝑛) 

And the predictive of  𝜔𝜔′′ given 𝜔𝜔′ is 

𝜈𝜈(𝜔𝜔′′|𝜔𝜔′) =
Γ(ω′ + ω′′)
Γ(𝜔𝜔′)𝜔𝜔′′!

�
𝑛𝑛

𝑛𝑛 + 𝑘𝑘
�
𝜔𝜔′
�

𝑘𝑘
𝑛𝑛 + 𝑘𝑘

�
𝜔𝜔′′

 

The index of satisfaction is then expressed as: 

𝜙𝜙(𝜔𝜔′′) = �

0                                      𝑖𝑖𝑖𝑖     𝜔𝜔′′ < 𝑞𝑞0 

� 𝑒𝑒−𝑘𝑘𝜃𝜃0
(𝑘𝑘𝜃𝜃0)
𝑠𝑠!

𝜔𝜔′′−1

𝑠𝑠=0

                   𝑖𝑖𝑖𝑖   𝜔𝜔′′ ≥ 𝑞𝑞0      
 

Where  

𝑞𝑞0 = 𝑖𝑖𝑖𝑖𝑖𝑖 �𝑠𝑠;�𝑒𝑒−𝑘𝑘𝜃𝜃0
(𝑘𝑘𝜃𝜃0)
𝑠𝑠!

𝑢𝑢−1

𝑠𝑠=0

≥ 1 − 𝛼𝛼 � 

And the prediction of satisfaction is given by: 

π(ω′) = � � � 𝑒𝑒−𝑘𝑘𝜃𝜃0
(𝑘𝑘𝜃𝜃0)
𝑠𝑠!

𝜔𝜔′′−1

𝑠𝑠=0

 �
∞

ω′′=q0

𝜈𝜈(𝜔𝜔′′|𝜔𝜔′′) 

= � � � 𝑒𝑒−𝑘𝑘𝜃𝜃0
(𝑘𝑘𝜃𝜃0)
𝑠𝑠!

𝜔𝜔′′−1

𝑠𝑠=0

 �
Γ(ω′ + ω′′)
Γ(𝜔𝜔′)𝜔𝜔′′!

�
𝑛𝑛

𝑛𝑛 + 𝑘𝑘
�
𝜔𝜔′

�
𝑘𝑘

𝑛𝑛 + 𝑘𝑘
�
𝜔𝜔′′

 
∞

ω′′=q0

 

3.3 Gamma distribution 

Let us suppose that 𝑋𝑋′𝑖𝑖  (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘) and 𝑋𝑋′′𝑗𝑗  (1 ≤ 𝑗𝑗 ≤ 𝑛𝑛) 
are i.i.d. real random variables of Gamma distribution 
𝐺𝐺(𝑝𝑝, 𝜃𝜃) where 𝜃𝜃  is unknown and 𝑝𝑝 is known. Then, 𝜔𝜔′ =
∑ 𝑋𝑋′𝑖𝑖𝑘𝑘
𝑖𝑖=1  have a Gamma distribution 𝐺𝐺(𝑘𝑘𝑘𝑘, 𝜃𝜃 ) and 𝜔𝜔′′ =

∑ 𝑋𝑋′′𝑗𝑗𝑛𝑛
𝑗𝑗=1  have a Gamma distribution𝐵𝐵(𝑛𝑛𝑛𝑛,𝜃𝜃 ). Let be 𝐾𝐾 =

𝑘𝑘𝑘𝑘 and 𝑁𝑁 = 𝑛𝑛𝑛𝑛 . 

If 𝜃𝜃 has a non informative prior 𝑓𝑓(𝜃𝜃) = 𝜃𝜃−1. Then the 
posterior density of 𝜃𝜃 given 𝜔𝜔′ will be:  

𝑓𝑓(𝜃𝜃|𝜔𝜔′) ∝ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝐾𝐾,𝜔𝜔′) 

And the predictive of  𝜔𝜔′′ given 𝜔𝜔′ is: 

𝜈𝜈(𝜔𝜔′′|𝜔𝜔′) =
1

𝛽𝛽(𝑁𝑁,𝐾𝐾)
(𝜔𝜔′′)𝑁𝑁−1(𝜔𝜔′)
(𝜔𝜔′′ + 𝜔𝜔′)𝑁𝑁+𝐾𝐾

𝐾𝐾

 

The index of satisfaction is then expressed as: 

𝜙𝜙(𝜔𝜔′′)

= �
0                                          𝑖𝑖𝑖𝑖     𝜔𝜔′′ < 𝑞𝑞0 

𝐹𝐹(𝜔𝜔′′) = �
(𝜃𝜃0)𝑁𝑁

Γ(𝑁𝑁) 𝑡𝑡
𝑁𝑁−1𝑒𝑒−𝑡𝑡𝜃𝜃0𝑑𝑑𝑑𝑑

𝜔𝜔′′

0
    𝑖𝑖𝑖𝑖   𝜔𝜔′′ ≥ 𝑞𝑞0      

 

Where  𝐹𝐹(𝑞𝑞0) = 1 − 𝛼𝛼. 

 

And the prediction of satisfaction is given by: 

π(ω′) = � ��
(𝜃𝜃0)𝑁𝑁

Γ(𝑁𝑁) 𝑡𝑡
𝑁𝑁−1𝑒𝑒−𝑡𝑡𝜃𝜃0𝑑𝑑𝑑𝑑

𝜔𝜔′′

0
 �

∞

q0
𝜈𝜈(𝜔𝜔′′|𝜔𝜔′′)d𝜔𝜔′′ 
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= � ��
(𝜃𝜃0)𝑁𝑁

Γ(𝑁𝑁) 𝑡𝑡
𝑁𝑁−1𝑒𝑒−𝑡𝑡𝜃𝜃0𝑑𝑑𝑑𝑑

𝜔𝜔′′

0
 �

1
𝛽𝛽(𝑁𝑁,𝐾𝐾)

(𝜔𝜔′′)𝑁𝑁−1(𝜔𝜔′)
(𝜔𝜔′′ + 𝜔𝜔′)𝑁𝑁+𝐾𝐾

𝐾𝐾

𝑑𝑑𝜔𝜔"
∞

q0
 

This can be estimated numerically. 

3.4. Gaussian model 
Relying on the Central Limit Theorem, statisticians in 

the first half of the nineteenth century were almost always 
referring to the normal distribution. There are obviously 
many phenomena for which a normal model is not 
applicable, but it is still extensively used, in particular, in 
econometrics and in fields where the Central Limit 
Theorem approximation can be justified (particle 
reliability, etc.). In fact, the normal approximation is often 
justified for asymptotic reasons (see [17]). Therefore, it is 
of interest to study in detail this particular distribution from 
a Bayesian viewpoint. The corresponding calculations of 
the prediction being realizable by the Monte-Carlo 
methods (section 4). 

We perform independent observations of same normal 
random variable 𝒩𝒩(𝜃𝜃,𝜎𝜎2). In all that follows, Φ and 𝜑𝜑  
(resp. 𝑇𝑇𝑛𝑛−1 and 𝑡𝑡𝑛𝑛−1) indicates the cumulative distribution 
function and the  density of the distribution 𝒩𝒩(0,1) 
respectively (resp. of the student distribution 𝒯𝒯1(𝑛𝑛 − 1,0,1) 
)  . 

The first result; 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), is a series of 𝑛𝑛 
observations and the second result is a series; 𝑦𝑦 =
(𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑘𝑘). 

For obvious reasons of exhaustiveness, we will base all 
calculations on 𝑥𝑥 = 1

𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1  and 𝑦𝑦 = 1

𝑘𝑘
∑ 𝑦𝑦𝑗𝑗𝑘𝑘
𝑗𝑗=1  , of 

distributions 𝒩𝒩(𝜃𝜃,𝜎𝜎12) and  𝒩𝒩(𝜃𝜃,𝜎𝜎22), respectively, 
where 𝜎𝜎12 = 𝜎𝜎2

𝑛𝑛
 and 𝜎𝜎22 = 𝜎𝜎2

𝑘𝑘
. 

We suppose here that 𝜎𝜎2 is unknown (so 𝜎𝜎12 and 𝜎𝜎22) (The 
situation where 𝜎𝜎2 is known was studied in [15]). We 
choose as a priori distribution for (𝜃𝜃,𝜎𝜎2) the non-
informative distribution  𝜋𝜋(𝜃𝜃,𝜎𝜎2) = 1

𝜎𝜎
 ([17]). We wish to 

test a null assumption of type 𝜃𝜃 ≤ 𝜃𝜃0.  

 We use here a usual test ranging on 𝑦𝑦, whose critical 
region is ]𝑞𝑞0, +∞[, where 𝑞𝑞0 = 𝜃𝜃0 + 𝑆𝑆′2𝑢𝑢𝛼𝛼+, 𝑢𝑢𝛼𝛼+ indicating 
the upper 𝛼𝛼 quantile of the standard normal 
distribution 𝒩𝒩(0,1): 
 Φ(𝑢𝑢𝛼𝛼+) = 1 − α and 𝑆𝑆′2 = 𝑆𝑆2

√𝑘𝑘
. The posterior density 

associated to the prior 𝜋𝜋(𝜃𝜃,𝜎𝜎2) = 1
𝜎𝜎
 and applied to the 

second phase  𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2 , … ,𝑦𝑦𝑘𝑘) is then: 

𝜃𝜃|𝜎𝜎,𝑦𝑦, 𝑆𝑆22~𝒩𝒩�𝑦𝑦,
𝜎𝜎2

𝑘𝑘
�  𝑎𝑎𝑎𝑎𝑎𝑎 

𝜎𝜎2|𝑦𝑦, 𝑆𝑆22~ℐ𝒢𝒢 �
𝑘𝑘 − 1

2
,
𝑆𝑆22

2
� 

Where   𝑆𝑆22 = 1
𝑘𝑘
∑ �𝑦𝑦𝑗𝑗 − 𝑦𝑦�

2𝑘𝑘
𝑗𝑗=1 . 

 And the predictive density of 𝑦𝑦 given 𝑥𝑥 is given by: 

𝑓𝑓𝑥𝑥(𝑦𝑦) =
Γ �𝑛𝑛2�

√𝜋𝜋Γ �𝑛𝑛 − 1
2 �

1
𝑆𝑆1
√𝑛𝑛𝑛𝑛
√𝑛𝑛 + 𝑘𝑘 ⎝

⎜
⎜
⎛(𝑦𝑦 − 𝑥𝑥)2

𝑆𝑆12
𝑘𝑘𝑘𝑘

(𝑛𝑛 + 𝑘𝑘)

+ 1

⎠

⎟
⎟
⎞

−𝑛𝑛2

 

Where  𝑆𝑆12 = 1
𝑛𝑛
∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥)2𝑛𝑛
𝑖𝑖=1 . 

We identify a student distribution  𝒯𝒯1 �𝑛𝑛 − 1, 𝑥𝑥, 𝑆𝑆1
√𝑛𝑛𝑛𝑛
√𝑛𝑛+𝑘𝑘

� 

Finally the prevision of satisfaction is: 

𝜋𝜋(𝑥𝑥) = � Φ�
y − 𝜃𝜃0

S2
√k

�
+∞

𝑞𝑞0

×
Γ �𝑛𝑛2�

√𝜋𝜋Γ�𝑛𝑛 − 1
2 �

1
𝑆𝑆1
√𝑛𝑛𝑛𝑛
√𝑛𝑛 + 𝑘𝑘 ⎝

⎜
⎜
⎛(𝑦𝑦 − 𝑥𝑥)2

𝑆𝑆12
𝑘𝑘𝑘𝑘

(𝑛𝑛 + 𝑘𝑘)

+ 1

⎠

⎟
⎟
⎞

−𝑛𝑛2

𝑑𝑑𝑦𝑦 

4. EXAMPLES 

4.1 Application for binary outcomes: 

We consider the design for real data, taken from the study 
of predictive probability approach ([14]; [3]; [20]) . 

In a phase II trials, an investigator plans to enroll a 
maximum of 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 40 patients into the study. At a given 
time 𝜔𝜔′ = 16 responses are observed in 𝑘𝑘 = 23 patients. 
In the light of this result should the investigator continue 
the trial or stop it using the index of satisfaction IS and its 
prediction PIS if he enrolls all patients? 

    Assuming a prior distribution of 𝜃𝜃 as 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(1/2,1/
2) and with the number of responses in future 𝑛𝑛 = 17 
patients, 𝜔𝜔′′ follows a beta-binomial distribution 
(17, 16.5, 7.5). At each possible value of 𝜔𝜔′′ = 𝑖𝑖, the 
posterior probability of 𝜃𝜃 follows a beta distribution 
𝜃𝜃|𝜔𝜔′,𝜔𝜔′′ = 𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(1

2
+ 𝜔𝜔′ + 𝑖𝑖, 1

2
+ 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜔𝜔′′ − 𝑖𝑖) 

For this example 

𝜃𝜃|𝜔𝜔′ = 16,𝜔𝜔′′ = 𝑖𝑖 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(16.5 + 𝑖𝑖, 24.5 − 𝑖𝑖)  

In order to use the index of satisfaction IS for 𝜃𝜃₀ = 60%, 
we have to find 𝑞𝑞₀ = 13, for level of significance 𝛼𝛼 =
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0.05. So the index of satisfaction IS and its prediction PIS 
will be Table 1 

 
Table 1: IS and PIS for different values of 𝜔𝜔′ and 𝜔𝜔′′. 

  In this case, the prediction of satisfaction will be 
𝜋𝜋(𝜔𝜔′ = 16) = 0.40 and we will reject 𝐻𝐻₀. This result is 
the same as the Simon's design ([20]) and the Predictive 
Probability design introduced by Lee and Liu (2008) [14] 
but with little satisfaction. On the other hand, if we take 
𝜔𝜔′ = 20, then 𝜋𝜋(𝜔𝜔′ = 20) = 0.85 and we should reject 
the null hypothesis with a great satisfaction, so we are more 
satisfied about the efficacy of the treatment. 

4.1.1 PIS-procedure as a stopping rule: 

   This procedure can be used formally as a stopping rule 
for clinical trials. At interim analysis, termination occurs to 
reject 𝐻𝐻0 if the prediction of satisfaction PIS at point 𝜃𝜃0is 
high, formally, if it is greater than a specified constant 
𝛾𝛾between 0.5 and 1. 

 The specific stopping criteria are typically unique to each 
trial and include ethical and business considerations, such 
as risk/ benefit considerations, available resources, 
opportunity cost, and overall statistical power. In the 
context of interim monitoring for futility, prediction of 
satisfaction is naturally appealing because it directly 
addresses the relevant question, that is, whether a trial is 
likely to reach its objective if continued to the planned 
maximum sample size.  

 In our example, even if we take 𝛾𝛾 ≥ 0.5, than 𝜋𝜋(𝜔𝜔′ =
17) = 0.52  (table 1). In this case, our satisfaction will be 
great and we are satisfied that our treatment is promising 
and we should collect more information about it. 
Furthermore, this non-informative prior and cut-off reserve 
type I error which is: 

 𝐼𝐼𝐼𝐼(𝜔𝜔′ > 17|𝜃𝜃0 = 0.60) = 0.05. In this case, the actual 
power of this design, for an alternative of 𝜃𝜃1=0.80, is 0.84. 

  Tables 2 (a) and (b) gives the values of the prediction of 
satisfaction PIS for different values of 𝜃𝜃0, 𝑘𝑘,𝑛𝑛,𝜔𝜔′, for 𝛼𝛼 =
0.05. 

 
Table 2 (a): PIS for different values of 𝜃𝜃0. 

 
Table 2 (b): PIS for different values of 𝜃𝜃0, 𝑘𝑘,𝑛𝑛,𝜔𝜔′, for 

𝛼𝛼 = 0.05. 

Larger values of 𝜃𝜃₀, for example, 80% have a slower rate 
of convergence to 1 than the smaller values, for example, 
20% (see figure 2 (a)), because we need more arguments 
to reject the null hypothesis. Also, for type I error, the 
rejection of the null hypothesis will be hard if we increase 
the level of significance (figure 2 (b)). 

 

Figure 2: PIS augments slowly if 𝜃𝜃 increases (a) and if 
the level of significance is greater (b). 

A criticism addressed to this procedure, that it does not give us 
direct Bayesian information about 𝜃𝜃  such as could provided 
by a credible interval. Also, to prove the efficacy of the 
treatment we should have a big probability of success. In the 
example above, the trial will stop for futility if less than 17 
successes/23 (74%) are observed. 
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3.4.1. Monte Carlo’s Method : 
 In order to carry out the calculation of 𝜋𝜋(𝑥𝑥) using a 
Monte Carlo method, and by change of variable, we rewrite 
it in the following form: 

𝜋𝜋(𝑥𝑥)

= [1 − 𝑇𝑇𝑛𝑛−1(𝑎𝑎 + 𝛾𝛾𝑢𝑢𝛼𝛼+)]� Φ�
z − 𝑎𝑎
γ

�
+∞

−∞

×
𝑡𝑡𝑛𝑛−1(𝑧𝑧)

1 − 𝑇𝑇𝑛𝑛−1(𝑎𝑎 + 𝛾𝛾𝑢𝑢𝛼𝛼+) 𝕝𝕝�𝑎𝑎+𝛾𝛾𝑢𝑢𝛼𝛼+,+∞�𝑑𝑑𝑧𝑧 

Where 𝑎𝑎 = √𝑛𝑛−1
𝑆𝑆′1

(𝜃𝜃0 − 𝑥𝑥)  ,  𝛾𝛾 = √𝑛𝑛 − 1 𝑆𝑆′2
𝑆𝑆′1

 

With  𝑆𝑆′1 = 𝑆𝑆1

� 𝑛𝑛𝑛𝑛
𝑛𝑛+𝑘𝑘

, 𝑆𝑆′2 = 𝑆𝑆2
√𝑘𝑘

 , and 

𝑡𝑡𝑛𝑛−1(𝑧𝑧)
1−𝑇𝑇𝑛𝑛−1�𝑎𝑎+𝛾𝛾𝑢𝑢𝛼𝛼+�

𝕝𝕝�𝑎𝑎+𝛾𝛾𝑢𝑢𝛼𝛼+,+∞� 

is the probability density 𝒬𝒬 deduced from the cumulative 
distribution function of the student distributioned  by the 
event [𝑎𝑎+, +∞[. 

The Monte Carlo method then consists in approaching 
𝜋𝜋(𝑥𝑥)by: 

[1 − 𝑇𝑇𝑛𝑛−1(𝑎𝑎 + 𝛾𝛾𝑢𝑢𝛼𝛼+)] �
1
𝑁𝑁
�Φ�

Zi − 𝑎𝑎
γ

�
𝑁𝑁

𝑖𝑖=1

� 

Where the Zi are 𝑁𝑁 realisations of the probability 𝒬𝒬. The 
pulling of the Zi proceeds in the following way: 

- 𝑈𝑈𝑖𝑖 is drawn according to the uniform distribution 
on[0,1]. 

- 𝑉𝑉𝑖𝑖 =  𝑇𝑇𝑛𝑛−1(𝑎𝑎 + 𝛾𝛾𝑢𝑢𝛼𝛼+) + �1 − 𝑇𝑇𝑛𝑛−1(𝑎𝑎 + 𝛾𝛾𝑢𝑢𝛼𝛼+)�𝑈𝑈𝑖𝑖  ; 
i.e., that 𝑉𝑉𝑖𝑖 follows the uniform distribution on 
[𝑇𝑇𝑛𝑛−1(𝑎𝑎 + 𝛾𝛾𝑢𝑢𝛼𝛼+), 1].  

Zi =  𝑇𝑇−1𝑛𝑛−1( 𝑉𝑉𝑖𝑖), i.e., that  Zi follows the distribution 𝒬𝒬. 

4.2. Result’s representation and discussion 

We will find below the representative curves of 𝜋𝜋 as a 
function of the observation 𝑥𝑥 = 1

𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 . We have 

considered only the case where 𝜃𝜃0 = 0 and in the first as in 
the second sample, the observations are of the same unit 
variance 𝜎𝜎2 but where the numbers can vary, considering 
that a modification of 𝜃𝜃0 and 𝜎𝜎2 will only result in a 
translation effect. We have considered, the two cases: 𝛼𝛼 =
0.05 and 𝛼𝛼 = 0.01. On the other hand, we have taken 𝑘𝑘 =
10 , 20 or 30 for 𝑛𝑛 = 10 (Figure 3 and Figure 4). 

 
Figure 3: Prediction of satisfaction based on 5000 

iterations for 𝛼𝛼 = 0.05,  𝜎𝜎2 = 1 and 4. Graphs with a step 
0.001 for 𝑥𝑥. 

 
Figure 4: Prediction of satisfaction based on 5000 

iterations for 𝛼𝛼 = 0.01,  𝜎𝜎2 = 1 and 4. Graphs with a step 
0.001 for 𝑥𝑥. 

  Graphs (3(a)- 3(b)) represent the prediction of 
satisfaction when 𝛼𝛼 = 0.05. The first one is for 𝜎𝜎 = 1 and 
the second is for 𝜎𝜎 = 2. We see clearly that the satisfaction 
rises with 𝑛𝑛 and the convergence becomes slower in the 
second one and it is clear that when 𝑘𝑘 augments the 
satisfaction increases fastly. 

Furthermore, graphs (4(a)- 4(b)) represent the prediction of 
satisfaction when 𝛼𝛼 = 0.01 and 𝛼𝛼 = 0.05 for 𝑛𝑛 = 𝑘𝑘 = 10 
and 𝜎𝜎 = 1 or 𝜎𝜎 = 2 respectively. We can make the same 
remark but the values augment moving away from 0 fastly 
in the second graph than in the first one because we need 
more arguments to reject the null hypothesis. This conveys 
well the interest of the consideration of the p-value in the 
index of satisfaction that the reject region is more 
informative since 𝑥𝑥 is larger, which gives importance to the 
indicated index. 

5. CONCLUSION 

  Bayesian predictive procedures have an important 
contribution to inference and data analysis. Within this 
perspective, Bayesian predictive probabilities can be used 
for interim monitoring of experimental trials to estimate the 
probability of observing a statistically significant result if 
the trials are to continue to its predefined maximum sample 
size. 

 The main objective of this paper is to present an 
answer to the question:" How to evaluate, if a given 
experiment will be conclusive about a hypothesis before it 
is performed?". The answer is given by the proposal hybrid 
Bayesian-frequentist procedure to evaluate whether a p-
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value-based hypothesis test will yield a conclusive result in 
the context of clinical trials. The proposed design is based 
on a family of limited indexes of satisfaction which was the 
generalization of the “rudimentary“ index of satisfaction 
considered in [13]. 

 The methodology is useful in two-steps testing 
procedures; the result of the first step is used to decide if 
the experiment will be continued. Given the posterior 
distribution derived from the available data, the prediction 
of satisfaction is defined as the predictive expectation of 
the index of satisfaction for the future sample. We consider 
different cases of the application of the proposed procedure 
with a non-informative prior. 

 Furthermore, we can use this procedure to develop an 
adaptive design for experimental trials especially in the 
sequential analyses to monitor trials very well by choosing 
any cohort size for the steps. Examples in section 4, for 
both binary outcomes and it’s approximation to the 
Gaussian model, gives the characteristics of this procedure. 

  For example, in the context of interim monitoring for 
futility for single–arm clinical trials, prediction of 
satisfaction is naturally appealing because it directly 
addresses the relevant question, that is, whether a trial is 
likely to reach its objective if continued to the planned 
maximum sample size. In this situation, the index of 
satisfaction can be used formally as a stopping rule. At 
interim analysis, termination occurs to reject 𝐻𝐻0 if the 
prediction of satisfaction  PIS, at a point 𝜃𝜃0, is high, 
formally, if it is greater than a specified constant between 
0.5 and 1. The specific stopping criteria are typically 
unique to each trial and include ethical and business 
considerations, such as risk/ benefit considerations, 
available resources, opportunity cost, and overall statistical 
power.  

  Bayesian experimental trial simulation is a generic 
tool that can compute the predictive satisfaction for any 
trial result, whether that is based on a Bayesian analysis of 
the data, frequentist significance tests or a formal decision 
analysis such as a decision by a health care provider to put 
a drug in the market. In our paper, we have taken an 
inferential problem related to the binary outcomes and the 
Gaussian model usig this methodology and this stopping 
rule for the trial. The simulations results have perfectly 
illustrated the procedure which ensures the neutrality, the 
objectivity and esspecially the ethical considerations. The 
numeric calculus were similars to those obtained by [8] and 
[20]. 
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