REGRESSION NON PARAMETRIQUE DANS UN MODELE GAUSSIEN

Authors

  • N NEMOUCHI Université Constantine 1
  • Z MOHDEB Université Constantine 1

Keywords:

Estimation de la densité, estimation de la régression, estimation à noyau, bandes de confiance.

Abstract

L'objet de ce travail est de construire des estimateurs de régression non paramétrique asymptotiquement optimaux, sous l'hypothèse que les lois sous-jacentes sont gaussiennes. Les résultats que nous obtenons présentent l'intérêt d'être directement applicables en analyse exploratoire des données.

Downloads

Download data is not yet available.

Author Biographies

N NEMOUCHI, Université Constantine 1

Département de Mathématique

Z MOHDEB, Université Constantine 1

Département de Mathématique,

References

- Akaike, H. (1954). An approximation of the density function.

Ann. Inst. Statist. Math., 6, 127-132.

- Bosq, D. et Lecoutre, J. P. (1987). Théorie de l’Estimation

Fonctionnelle. Economica, Paris.

- Deheuvels, P. and Mason, D. M. (2004). General asymptotic

confidence bands based on kernel-type function estimators.

Stat. Infer. Soc. Processes, 7, 225-277.

- Devroye, L. (1978). The uniform convergence of the

Nadaraya-Watson regression function Estimate. Can. J.

Statist., 6, 179-191.

- Devroye, L. and Györfi, L. (1985). Nonparametric Density

Estimation: The L1 view. Wiley, New York.

- Devroye, L. and Lugosi, G. (2001). Combinatorial methods in

density estimation. Springer Series in Statistics. Springer-

Verlag, New York.

- Einmahl, U. and Mason, D. M. (2000). An empirical process

approach to the uniform consistency of kernel-type function

estimators. J. Theoretical Prob., 13, 1-37.

- Härdle, W. (1990). Applied Nonparametric Regression.

Cambridge University Press, Cambridge.

- Härdle, W., Jansen, P. and Serfling, R. (1988). Strong

uniform consistency rates for estimators of conditional

functionals. Ann. Statist., 16, 1428-1449.

- Izenman, A. J. (1991). Recents developments in

nonparametric density estimation. J. Amer. Statist. Assoc.,

, no. 413, 205-224.

- Nadaraya, E. A. (1964). On estimating regression. Theor.

Prob. Appl., 9, 141-142.

- Nadaraya, E. A. (1989). Nonparametric Estimation of

Probability Densities and Regression Curves. Kluwer,

Dordrecht.

- Parzen, E. (1962). On estimation of a probability density

function and mode. Ann. Math. Statist. 33, 1065-1076.

- Prakasa Rao, B. L. S. (1983). Nonparametric Functional

Estimation. Academic Press, New York.

- Rosenblatt, M. (1956). Remarks on some nonparametric

estimates of a density function. Ann. Math. Statist., 27, 832-

- Roussas, G. (1990). Nonparametric Functional Estimation

and Related Topics. NATO ASI series 355. Kluwer,

Dordrecht.

- Scott, D. W. (1992). Multivariate Density Estimation-

Theory, Practice and Visualization. Wiley, New York.

- Silverman, B. W. (1986). Density Estimation for Statistics

and Data Analysis. Chapman and Hall, London.

- Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing.

Chapman and Hall, London.

- Watson, G. S. (1964). Smooth Regression Analysis.

Sankhya A, 26, 359-372.

Published

2006-12-01

How to Cite

NEMOUCHI, N., & MOHDEB, Z. (2006). REGRESSION NON PARAMETRIQUE DANS UN MODELE GAUSSIEN. Sciences & Technology. A, Exactes Sciences, (24), 25–30. Retrieved from https://revue.umc.edu.dz/a/article/view/136

Issue

Section

Articles