CRITICAL SLOW DOWN EFFECT OF CONVERGENCE ON THE FORMAL ORTHOGONAL POLYNOMIALS METHOD

Authors

  • A SARI Université Aboubekr Belkaïd, Tlemcen
  • S MAHAMMED Université Aboubekr Belkaïd, Tlemcen
  • N GHOUALI Université Aboubekr Belkaïd, Tlemcen
  • A BENCHAIB Université Aboubekr Belkaïd, Tlemcen

Keywords:

percolation, critical slow down, numerical relaxation, formal orthogonal polynomials

Abstract

The critical Slow down Effect (CSDE) is the major obstacle in the large scale numerical simulations of physical systems. In our case, to obtain the current distribution on a random resistor network at the percolation
threshold, by the Jacobi relaxation method, the number of iterations needed for the system to relax to its steady state grows faster than the volume. In this paper, we describe technical details on the formal orthogonal polynomials method and comment our results. We show that the main advantage of this method is that there is not CSDE. However it appears a new type of slow down by the difficult choice of an initial vector y.

Downloads

Download data is not yet available.

Author Biographies

A SARI, Université Aboubekr Belkaïd, Tlemcen

Laboratoire de Physique Théorique, Département de
Physique, Faculté des Sciences

S MAHAMMED, Université Aboubekr Belkaïd, Tlemcen

Laboratoire de Physique Théorique, Département de
Physique, Faculté des Sciences

N GHOUALI, Université Aboubekr Belkaïd, Tlemcen

Département de Mathématiques, Faculté des Sciences

A BENCHAIB, Université Aboubekr Belkaïd, Tlemcen

Département de Mathématiques, Faculté des Sciences

References

R. Kopelman, J. Stat. Phys. 42, 185 (1986).

W. D. Dozier, J. M. Drake, and J. Klafter, Phys. Rev.

Lett. 56, 197 (1986).

P. Meakin, Phys. Rev. A34, 710 (1986).

R. Rammal, C. Tannous, P. Breton, and A.-M. S.

Tremblay, Phys. Rev. Lett. 54, 1718 (1985).

see, for example, K. Huang, “Statistical Mechanics” ( J.

Wiley & Sons, 2nd ed. 1987).

S. Havlin and D. Ben-Avraham, Adv. Phys. 36, N°. 6,

(1987)

M. Barthélémy, S.V. Buldyrev, S. Havlin and H.E.

Stanley, arXiv:cond-mat/0002252v2, 23 Feb 2000.

J. Adler, A. Aharony, R. Blumenfeld, A. B. Harris, and

Y. Meir, Phys. Rev. B 47, 10, 5770 (1993).

H. Tanino, A. Kuprin, and H. Deai, Phys. Rev. B 53, 4,

(1996).

B. Derrida, J. G. Zabolitzky, J. Vannimenus, and D.

Stauffer, J. Stat. Phys 36, Nos. 1/2, 31 (1984).

C.J. Lobb, and D. J. Frank, J. Phys. C 12, L827 (1979).

J. Hoshen, and R. Kopelman, Phys. Rev. B 14, 3428

(1976)

H. Sher, and M. Lax, Phys. Rev. B 7, 4491 (1973).

M. S. Friedrichs, and R. A. Friesner, Phys. Rev. B 37,

No. 1, 308 (1988).

L. de Arcangelis, S. Redner, and A. Coniglio, Phys.

Rev. B 31, 4725 (1985).

R. Orbach, J. Stat. Phys. 36, 735 (1984).

A. Blumen, G. Zumofen, and J. Klafter, J.

Luminescence 45, 90 (1990).

R. Fisch, and A. B. Harris, Phys. Rev. B 18, 416

(1978).

J.-P. Hovi, and A. Aharony, in Proc. Of the Nonlinear

and Random Processes, Taipei,

-24 july, p. 68, ed. C.-K. Hu and K.-T Leung,

Elsevier (1995).

T. Nakayama, and K. Yakubo, ReV. of Modern Phys.

, No 2, 381 (1994).

J.-S. Wang, and R.H. Swendsen, Physica A 167, 565

(1990).

G. G. Batrouni, A. Hansen, and M. Nelkin, Phys. Rev.

Lett. 57, No. 11, 1336 (1986).

C. Lanczos, J. Rs. Natl. Bur. Stand. 45, 255, (1950).

C. Lanczos, J. Rs. Natl. Bur. Stand. 49, 33, (1952).

C. Brezinski, M. Redivo Zaglia, and H. Sadok, Numer.

Math. 83, 53, (1999).

G.H. Golub, and C. F. Van Loan, Matrix

Computations, ed. The Johns Hopkins Univ. Pres.,

(1989).

C. Brezinski, M. Redivo Zaglia, and H. Sadok, Numer.

Math. 83, 53 (1999).

C. Brezinski , and H. Sadok, Lanczos type algorithm

for systems of linear equations, Publication ANO – 272,

may 1992, USTL (Lille-France).

O. Axelsson, Lectures notes in Mathematics 572,

Springer-Verlag, Berlin, Heudelberg, New-York, pp. 2-

(1977).

C. Penneta, L. Reggiani, Gy. Trefán and E. Alfinito,

arXiv.cond-mat/0202268 v1, 15 Feb 2002.

O; Stenull and H.-K. Jansen, arXiv.cond-mat/0110560

v1 26 Oct 2001

Published

2005-06-01

How to Cite

SARI, A., MAHAMMED, S., GHOUALI, N., & BENCHAIB, A. (2005). CRITICAL SLOW DOWN EFFECT OF CONVERGENCE ON THE FORMAL ORTHOGONAL POLYNOMIALS METHOD. Sciences & Technology. A, Exactes Sciences, (23), 43–46. Retrieved from https://revue.umc.edu.dz/a/article/view/180

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.