INTERPRETATION DU MODELE LOGISTIQUE A RAPPORT CONTINU EN TERME DE DISTRIBUTION
Keywords:
Modèle logistique, logit à rapport continu, odds-ratioAbstract
L’objectif de ce travail est consacré principalement à la présentation de deux modèles logistiques à rapports continus pour une variable réponse ordinale à c catégories et de leurs interprétations en termes de distribution .
Downloads
References
- Bouyer J., "La Régression Logistique en Epidémiologie", Partie I, Rev. d'Epidémiologie et de Santé Publique, 39, (1991), pp. 79-87.
- Bouyer J., "La Régression Logistique en Epidémiologie", Partie II, Rev. d'Epidémiologie et de Santé Publique, 39, (1991), pp. 183-196.
- BMDP Statistical Sofware, Vol. 2, University Of California Press, Los Angeles, (1988).
- Cox D.R. and Snell E.J., "Analysis of Binary data", London Chapman and Hall, (1989).
- Agresti A., "Categorical Data Analysis", John Wiley and Sons Inc., (1991).
- Anderson J.A., "Regression and Ordered Categorical Variables", Journal of the Royal Statistical Society, Series B46, (1984), pp. 1-30.
- Goodman L.A., "The analysis of Dependence in Cross-Classification having Ordered Categories using log-linear Models for Frequencies and log-linear Models for Odds", Biometrics, 39, (1983), pp. 149-160.
- Williams O.D., and Grizzle J.E., "Analysis of Contingency Tables having Ordered Response Categories", J.Amer .Statist. Assoc., 67, (1972), pp. 55-63.
- Cullagh M.C., "Regression Models for Ordinal Data", (With discussion), J. Roy. Statist. Soc., B42, (1980), pp.109-142.
- Bock R.D., "Multivariate Statistical Methods in Behavioral Research", New York, Mc Graw-Hill. (1975), p. 29.
- Fienberg S.E. and Mason W.M., "Identification and Estimation of Age Period Cohort Models in the Analysis of Discrete Archival Data", Sociological Methodology, San-Francisco, Jossey-Bass, (1979), pp.1-67.
- Mc Cullagh P. and Nelder J., "Generalized Linear Models", Chapman and Hall, London, (1983).
- Back R.D. and Yates G., "Multiqual, log-linear Analysis of Nominal or Ordinal Qualitative by the Method of Maximum Likelihood", Chicago, International Educational Services, (1973).
- Hanfelt J.J. and Liang K-Y, "Approximate Likelihood Ratios for General Estimating Functions", Biometrika, 82, (1995), pp.461-477.