Synthesis and characterization of the hybrid Ni-TiO2/PANI for an efficient hydrogen photoproduction under visible light

Authors

  • Mohamed Faouzi Nsib University of Gabès
  • Samira Saafi University of Gabès
  • Ali Rayes University of Gabès
  • Ammar Houas Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh

Keywords:

photocatalysis, Ni dopedZnO, polyaniline, hydrogen production

Abstract

NixZn1-xO/Polyaniline hybrid photocatalysts are synthesized by the impregnation method at ambient temperature and used for hydrogen photoproduction experiments. XRD, UV-Vis DRS, SEM and TGA are used to characterize the prepared materials. It is shown that the Ni2+ amount doped into ZnO controls its morphology and enhances its photoactivity for H2 generation. Polyaniline (PANI) is shown to sensitize ZnO and to extend its light absorption toward the visible region. The hybrid photocatalyst with 10 mol. % Ni2+ and 10 wt. % PANI shows the maximum photocatalytic H2 production for one hour of visible irradiation: ~ 558 μmole while only ~ 178 μmole in the presence of pure ZnO. It is also observed that the hydrogen photoproduction efficiency depends strongly on the nature of the sacrificial electron donor and increases in the order: thiosulfate >sulfide> propanol.

Downloads

Download data is not yet available.

Author Biographies

Mohamed Faouzi Nsib, University of Gabès

URCMEP (UR11ES85), Faculty of Sciences

Samira Saafi, University of Gabès

URCMEP (UR11ES85), Faculty of Sciences

Ali Rayes, University of Gabès

National School of Engineers (ENIG)

Ammar Houas, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh

College of Sciences, Department of Chemistry

References

C-H Liao, C-W Huang, JCS Wu. Hydrogen Production from Semiconductor-basedPhotocatalysis via Water Splitting. Catalysts,2, 2012, 490-516.

Thomas CE, James BD, Lomax Jr FD, Kuhn Jr IF. Fuel Options for the fuel cell vehicle: hydrogen, methanol or gasoline?.Int J Hydrogen Energy,25, 2000, 551-67.

VPreethi, SKanmani.Photocatalytic hydrogen production.Mat SciSemiconProc,16 (3), 2013, 561-75.

X Chen, S Shen, L Guo, S S Mao. Semiconductor-based photo catalytic hydrogen generation.ChemRev,110, 2010, 6503-70.

Damien A. Hydrogène par électrolyse de l’eau. Techniques de l’Ingénieur 1992; J6366.

S Turn, C Kinoshita, Z Zhang, D Ishimura, J Zhou. An experimental investigation of hydrogen production from biomass gasification.Int J Hydrogen Energy, 23(8), 1998, 641-8.

Y Chen, Y Wang, H Xu, G Xiong. Efficient production of hydrogen from natural gas steam reforming in palladium membrane reactor. App Catal B: Environ, 80, 2008, 283-94.

GF Naterer. Hydrogen Production from Nuclear Energy, Chapter 2: Nuclear Energy and Its Role in Hydrogen Production. London:Springer-Verlag, 2013.

C Gaudillere L Naverrete, J M Serra. Syngas production at intermediate temperature through H2O and CO2 electrolysis with a Cu-based solid oxide electrolyzercell.Int J Hydrogen Energy, 39, 2014, 3047-54.

F Han, V S R Kambala, M Srinivasan, D Rajarathnam, R Naidu. Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review. ApplCatal A-General, 359(1-2), 2009, 25-40.

MN Chong, B Jin, CWK Chow, C Saint. Recent developments in photocatalytic water treatment technology: A review. Water Res, 44, 2010, 2997-3027.

AA Tellez, R Masson, D Robert, N Keller, V Keller. Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions.JPhotochemPhotobiol A-Chem, 250, 2012, 58-65.

MF Nsib, AMayoufi, N Moussa, N Tarhouni, A Massouri, A Houas, Y Chevalier.TiO2 modified by salicylic acid as a photocatalyst for the degradation of monochlorobenzene via Pickering emulsion way. J PhotochemPhotobiol A-Chem, 251, 2013, 10-17.

A Kudo. Photocatalysis and solar hydrogen production. Pure Appl. Chem,79 (11), 2007, 1917-27.

A Kudo.Recent progress in the development of visible light-driven powdered photocatalysts for water splitting.IntJHydrogen Energy, 32(14) 2007, 2673-8.

D Jing, L Guo, L Zhao, X Zhang, H Liu, M Li, S Shen, G Liu, X Hu, X Zhang, K Zhang, L Ma, P Guo. Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration. IntJHydrogen Energy, 35(13), 2010, 7087-97.

K Villa, X Domènech, S Malato, M I Maldonado, J Peral. Heterogeneous photocatalytic hydrogen generation in a solar pilot plant.Int J Hydrogen Energy, 38 (29), 2013, 12718-24.

AL Stroyuk, VV Shvalagin, SYaKuchmii. Photochemical synthesis and optical properties of binary and ternary metal–semiconductor composites based on zinc oxide nanoparticles.JPhotochemPhotobiol A-Chem,173(2), 2005, 185-194.

FD Mai, CS Lu, CW Wu, CH Huang, JY Chen, CC Chen. Mechanisms of photocatalytic degradation of Victoria Blue R using nano-TiO2.Sep PurifTechnol,62, 2008, 423-36.

Y Li, W Xie, X Hu, G Shen, X Zhou, Y Xiang, X Zhao, P Fang. Comparison of Dye Photodegradation and its Coupling with Light-to-Electricity Conversion over TiO2 and ZnO.Langmuir,26, 2010, 591-7.

M Ni, M KH Leung, DYC Leung, K Sumathy. A review and recent developments in photocatalytic water-splitting using TiO2for hydrogen production.RenewSustEnerg Rev,11(3), 2007, 401-25.

H Park, Y Park, W Kim, W Choi. Surface modification of TiO2 photocatalyst for environmental applications.JPhotochemPhotobiol C-Rev, 15,2013, 1-20.

R Qiu, D Zhang, Y Mo, L Song, E Brewer, X Huang, Y Xiong. Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J Haz Mater,156, 2008, 80-5.

Z Yin, N Chen, F Yang, S Song, C Chai, J Zhong. Structural, magnetic properties and photoemission study of Ni-doped ZnO. Solid State Commun,135, 2005, 430-3.

S Kant, A Kumar. ZnO and Ni doped ZnOnanospheres prepared by sol-gel method. Adv Mat Lett,3(4), 2012,350-4.

L Li, KS Hui, KN Hui, HW Park, DH Hwang, S Cho, SK Lee, PK Song, YR Cho, H Lee, YG Son, W Zhou. Synthesis and characterization of NiO-doped p-type AZO films fabricated by sol–gel method. Mater Lett,68, 2012, 283-6.

G Kickelbick. Hybrid Materials.Synthesis, Characterization, and Applications.Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007.

J Huang, Z Yin, Q Zheng. Applications of ZnO in organic and hybrid solar cells.Energ Environ Sci, 4(10), 2011, 3861-77.

S Kango, S Kalia, A Celli, J Njuguna, Y Habibi, R Kumar. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites - A review.Prog Polymer Sci,38, 2013, 1232-61.

Y Yu, J Ren, M Meng. Photocatalytichydrogenevolution on graphene quantum dots anchored TiO2 nanotubes-array. Int JHydrogenEnergy,38(28), 2013, 12266-72.

Y Wang, X Guo, L Dong, G Jin, Y Wang, X-Y Guo. Enhanced photocatalytic performance of chemically bonded SiC-graphene composites for visible-light-driven overall water splitting.IntJHydrogen Energy,38(29), 2013, 12733-8.

X Zhang, Z Jin, Y Li, S Li, G Lu. Photosensitized reduction of water to hydrogen using novel Maya blue-like organic–inorganic hybrid material.JColl Interface Sci, 333 (1) 2009, 285-93.

A Pron, P Rannou. Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. ProgPolymerSci, 27(1), 2002, 135-90.

FWang, S Min, Y Han, L Feng. Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2composite photocatalysts.SuperlatticeMicrost,48 (2), 2010, 170-80.

S B Kondawar, S A Acharya1, S R Dhakate. Microwave assisted hydrothermally synthesized nanostructure zinc oxide reinforced polyanilinenanocomposites. Adv Mat Lett, 2(5), 2011, 362-7.

A Katoch, M Burkhart, T Hwang, S S Kim. Synthesis of polyaniline/TiO2 hybrid nanoplates via a sol-gel chemical method.ChemEng J, 192 (1) 2012, 262-8.

A Pron, F Genoud, C Menardo, M Nechtschein. The effect of the oxidation conditions on the chemical polymerization of polyaniline. Synthetic Met, 24(3), 1988, 193-201.

H Okamoto, M Okamoto, T Kotaka. Structure development in polyaniline films during electrochemical polymerization. II: Structure and properties of polyaniline films prepared via electrochemical polymerization. Polymer, 39(18) 1998, 4359-67.

K He, M Li, L Guo. Preparation and photocatalytic activity of PANI-CdS composites for hydrogen evolution.Int J Hydrogen Energy, 37(1),2012, 755-9.

T Tayeh, AS Awad, M Nakhl, M Zakhour, J-F Silvain, J-L Bobet. Production of hydrogen from magnesium hydrides hydrolysis.Int J Hydrogen Energy,39(7), 2014, 3109-17.

AKoca, M Şahin. Photocatalytic hydrogen production by direct sun light from sulfide/sulfite solution. IntJHydrogen Energy, 27(4), 2002, 363-7.

G Murugadoss. Synthesis and Characterization of Transition Metals Doped ZnONanorods. J Mater SciTechnol,28(7), 2012, 587-593.

RJ Wen, X Fan, Z Yang, Z Tan, B Yang. Electrochemical performances of ZnO with different morphology as anodic materials for Ni/Zn secondary batteries.ElectrochimActa,83, 2012, 376-82.

O Yalçın. Nanorods, JanezaTrdine 9, 51000 Rijeka, Croatia: Published by InTech, 2012.

I Fechete, OErsen, FGarin, LLazar, ARach. Catalytic behavior of MnMCM-48 and WMnMCM-48 ordered mesoporous catalysts in a reductive environment: A study of the conversion of methylcyclopentane. CatalSciTechnol,3, 2013, 444-53.

S Haddoum, IFechete, BDonnio, FGarin,DLutic, CEChitour.Fe-TUD-1 for the preferential rupture of the substituted CC bond of methylcyclopentane (MCP).CatalComm,27, 2013, 141-7.

BPall, MSharon. "Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol–gel process". MaterChemPhys,76, 2002, 82-7.

S Suwanboon, P Amornpitoksuk, AHaidoux, JC Tedenac. Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature. J AllysCompd,462, 2008, 335-9.

H Yang, S Nie. Preparation and characterization of Co-doped ZnOnanomaterials.Mater ChemPhys,114, 2009, 279-82.

IK El Zawawi, RA AbdAlla. Electrical and optical phototransformation properties in As doped Se thin films. Thin solid films,339 (1-2), 1999, 314-9.

L Zhang, P Liu, Z Su. Preparation of PANI-TiO2nanocomposites and their solid-phase photocatalytic degradation.PolymDegradStabil,91, 2006, 2213-9.

C Luo, D Li, W Wu, Y Zhang, C PanPreparation of porous micro–nano-structure NiO/ZnOheterojunction and its photocatalyticproperty.RSC Adv,4, 2014, 3090-5.

T Lyubina, D V Markovskaya, E A Kozlova, VN Parmon. Photocatalytic hydrogen evolution from aqueous solutions of glycerol under visible light irradiation.Int J Hydrogen Energy,38, 2013, 14172-9.

X Zhang, D Jing, LGuo. Effects of anions on the photocatalytic H2 production performance of hydrothermally synthesized Ni-doped Cd0.1Zn0.9S photocatalysts. Int J Hydrogen Energy,35, 2010, 7051-7.

AA Nada, MH Barakat, HA Hamed, NR Mohamed, TN Veziroglu.Studies on the photo catalytic hydrogen production using suspended modified TiO2photocatalysts.Int J Hydrogen Energy,30, 2005, 687-91.

B Zielinska, EB Palen, RJ Kalenczuk. Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors.Int J Hydrogen Energy,33, 2008, 1797-802.

Y Li, F He, S Peng, G Lu, S Li.Photocatalytic H2 evolution from NaCl saltwater over ZnS1−x−0.5yOx(OH)y–ZnO under visible light irradiation. Int JHydrogenEnergy, 36(17),2011, 10565-73.

J Wang, Z Wang, B Huang, Y Ma, Y Liu, X Qin, X Zhang, Y Dai. Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO. ACS Appl Mater Interfaces, 4(8),2012, 4024-30.

SC Das, RJ Green, J Podder, TZ Regier, GS Chang, A Moewes.Band Gap Tuning in ZnOThrough Ni Doping via Spray Pyrolysis. J PhysChem C,117(24), 2013, 12745-53.

Published

2014-07-01

How to Cite

Nsib, M. F., Saafi, S., Rayes, A., & Houas, A. (2014). Synthesis and characterization of the hybrid Ni-TiO2/PANI for an efficient hydrogen photoproduction under visible light. Sciences & Technology. A, Exactes Sciences, (39), 107–117. Retrieved from https://revue.umc.edu.dz/a/article/view/606

Issue

Section

Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.