First order autoregressive representation of Markov bi-dimensional chains of 1-order

Auteurs-es

  • M BOUSSEBOUA Université Constantine 1
  • F. L RAHMANI Université Constantine 1

Mots-clés :

Markov’chains, autoregressive process, spectral density, diagonal development of bivariate distribution

Résumé

This paper suggests an extension of Lai’s results about the first order autoregressive
representation of Markov bi-dimensional chain of 1-order. In the case of markov chain with
independent components, we find of course the conditions validating these results for each
component.

Téléchargements

Les données de téléchargement ne sont pas encore disponible.

Biographies de l'auteur-e

  • M BOUSSEBOUA, Université Constantine 1
    Département de Mathématique

  • F. L RAHMANI, Université Constantine 1
    Département de Mathématique

Références

Brockwell, P. J. and Davis R. A., (1987). Time series :

Theory and methods (Springer Verlag).

Feller, W., (1968). An introduction to probability theory

and its application Vol 1 (John Wiley & sons)

Fuller, W.A. (1996). Introduction to Statistical Times

series (Wiley Series in Probability and statistics).

Lai, C.D.,(1977). First order autoregressive markov

processes. Stochastic processes and their applications, 3

-4.

Lancaster, P., (1968.). Theory of matrices (Academic

Press).

Téléchargements

Publié

2006-12-01

Numéro

Rubrique

Articles

Comment citer

First order autoregressive representation of Markov bi-dimensional chains of 1-order. (2006). Sciences & Technologie. A, Sciences Exactes, 24, 36-40. https://revue.umc.edu.dz/a/article/view/150