A THIRD ORDER HYPERBOLIC EQUATION WITH NONLOCAL CONDITIONS.
Mots-clés :
nonlocal Boundary Condition, Energy Inequalities, hyperbolic equation of mixed typeRésumé
In this paper, we study a mixed problem for a third order hyperbolic equation with non classical boundary condition. We prove the existence and uniqueness of the solution. The proof of the uniqueness is based on a priori estimate and the existence is established by Fourier’s method.
Téléchargements
Références
M.A.Al-kadhi, A class of hyperbolic equations with nonlocal conditions, Int. J. Math. Analysis, 2 (10) (2008), 491-498.
L.Bougoffa, Parabolic equations with nonlocal conditions, Appl. Math. Sciences 1 (21) (2007), 1041-1048.
A. Bouziani and N. E. Benouar, Problème mixte avec conditions intégrales pour une classe d.équations paraboliques, C. R. Acad. Sci. Paris, Série 1 321 (1995), 1182.
Bouziani, A. and Benouar, N.E., Mixed problem with integral conditions for a third order parabolic equation, Kobe J. Math. 15 (1998), 47-58.
M. Bouzit, N. Teyar, On a Third Parabolic Equation with Nonlocal Boundary Conditions, sciences et technologies Université Frères Mentouri -Constantine N° 33 Juin 2011.
M. Bouzit and N. Teyar ,A strong solution of a high-order mixed type differential equations with integral Boundary conditions, Advances in Differen- tial Equations and Control Processes, 2008, Volume 2, Issue 1, Pages 75 - 84.
M. Bouzit, N. Teyar, A Class of Third Order Parabolic Equations with Integral Conditions, Int. Journal of Math. Analysis -2009.- Vol. 3, 18. - pp.871 - 877.
A. A. Samarski, Some problems in differential equations theory, differ. Uravn, 16(11) (1980), 1221-1228
N. I. Yurchuk, Mixed problem with an integral condition for certain parabolic equations, Differ. Equ. 22 (12), (1986),1457-1463.